Search results

1 – 10 of over 1000
Article
Publication date: 9 February 2024

Chunxia Zhu and Xianling Meng

Micro-texture is processed on the surface to reduce the friction of the contact surface, and its application is more and more extensive. The purpose of this paper is to create a…

50

Abstract

Purpose

Micro-texture is processed on the surface to reduce the friction of the contact surface, and its application is more and more extensive. The purpose of this paper is to create a texture function model to study the influence of surface parameters on the accuracy of the simulated surface so that it can more accurately reflect the characteristics of the real micro-textured surface.

Design/methodology/approach

The microstructure function model of rough surfaces is established based on fractal geometry and polar coordinate theory. The offset angle θ is introduced into the fractal geometry function to make the surface asperity normal perpendicular to the tangent of the surface. The 2D and 3D contour surfaces of the surface groove texture are analyzed by MATLAB simulation. The effects of fractal parameters (D and G) and texture parameter h on the curvature of the surface micro-texture model were studied.

Findings

This paper more accurately characterizes the textured 3D curved surface, especially the surface curvature. The scale coefficient G significantly affects curvature, and the influence of fractal dimension D and texture parameters on curvature can be ignored.

Originality/value

The micro-texture model of the rough surface was successfully established, and the range of fractal parameters was determined. It provides a new method for the study of surface micro-texture tribology.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-09-2023-0298/

Details

Industrial Lubrication and Tribology, vol. 76 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Book part
Publication date: 18 January 2024

Pratima Jeetah, Geeta Somaroo, Dinesh Surroop, Arvinda Kumar Ragen and Noushra Shamreen Amode

Currently, Mauritius is adopting landfilling as the main waste management method, which makes the waste sector the second biggest emitter of greenhouse gas (GHG) in the country…

Abstract

Currently, Mauritius is adopting landfilling as the main waste management method, which makes the waste sector the second biggest emitter of greenhouse gas (GHG) in the country. This presents a challenge for the island to attain its commitments to reduce its GHG emissions to 30% by 2030 to cater for SDG 13 (Climate Action). Moreover, issues like eyesores caused by littering and overflowing of bins and low recycling rates due to low levels of waste segregation are adding to the obstacles for Mauritius to attain other SDGs like SDG 11 (Make Cities & Human Settlements Inclusive, Safe, Resilient & Sustainable) and SDG 12 (Guarantee Sustainable Consumption & Production Patterns). Therefore, together with an optimisation of waste collection, transportation and sorting processes, it is important to establish a solid waste characterisation to determine more sustainable waste management options for Mauritius to divert waste from the landfill. However, traditional waste characterisation is time consuming and costly. Thus, this chapter consists of looking at the feasibility of adopting machine learning to forecast the solid waste characteristics and to improve the solid waste management processes as per the concept of smart waste management for the island of Mauritius in line with reducing the current challenges being faced to attain SDGs 11, 12 and 13.

Details

Artificial Intelligence, Engineering Systems and Sustainable Development
Type: Book
ISBN: 978-1-83753-540-8

Keywords

Article
Publication date: 10 November 2023

Connor Shane Smith, Alanna Julius, Christian Arbeeny and John Davenport Stevens

Radio frequency (RF) technology relies on the electromagnetic properties of the materials used, which includes their complex permittivities and loss tangents. To measure these…

Abstract

Purpose

Radio frequency (RF) technology relies on the electromagnetic properties of the materials used, which includes their complex permittivities and loss tangents. To measure these properties, techniques for material characterization such as the transmission/reflection method are used in conjunction with conversion techniques to calculate these values from scattering parameters. Unfortunately, these techniques rely on relatively expensive rectangular waveguide adaptors and components, especially if testing over large frequency ranges. This paper aims to overcome this challenge by developing a more affordable test equipment solution based on additively manufactured waveguide sections.

Design/methodology/approach

To evaluate the effectiveness of using additively manufactured waveguides to perform electromagnetic characterization with the transmission/reflection method, samples of PLA Tough with varying infill percentages and samples made from several Formlabs photopolymer resins are fabricated and analyzed.

Findings

Results show that the method yielded permittivity and loss tangent values for the measured materials that generally agree with those found in the literature, supporting its credibility.

Originality/value

The accessibility of this measurement technique will ideally allow for more electromagnetic material characterization to occur and expand the possible use of additive manufacturing in future RF designs. This work also provides characterization of several Formlabs photopolymer resins, which have not been widely analyzed in the current literature.

Details

Rapid Prototyping Journal, vol. 30 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 16 June 2022

Vinícius Barbosa Henrique and Marlene Salete Uberti

The cadaster goes through its fifth wave of updating, seeking agility and efficiency in cadastral registration. However, despite recent advances in remote sensors and the low cost…

39

Abstract

Purpose

The cadaster goes through its fifth wave of updating, seeking agility and efficiency in cadastral registration. However, despite recent advances in remote sensors and the low cost of remotely piloted aircraft systems (RPAS), on-site visits are still used to complete the cadastral form. Thus, this work aims to employ techniques and methodologies for remote characterization of buildings for cadastral updating purposes, reducing the need to enter the parcels.

Design/methodology/approach

The research tools used were: RPAS and MMS (mobile mapping systems), making a three-dimensional model with RPAS data, and analyzing the results from these platforms. With the 3D model, it was possible to extract measurements and characteristics.

Findings

The analysis of the 3D model with the aerial photographs obtained better results in the characterization of the buildings and is the most indicated according to the study. There were difficulties in identifying some features, such as windows frames, and it was proposed to analyze the photographs without processing, to mitigate these identifications. The cadaster form was successfully completed using a combination of the techniques in this study.

Originality/value

This study brings a first proposal for the characterization of parcels for cadastral purposes, by remote sensing techniques, reducing the entry in the parcels for filling cadastral forms, with the evaluation of the proposal in the Brazilian case.

Details

International Journal of Building Pathology and Adaptation, vol. 42 no. 2
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 5 March 2024

Saloni Purandare and Chunhui Xiang

Firefighter Personal Protective Equipment (PPE) is the only barrier between the firefighter and hazardous environment. Gloves are a crucial component of the multi-component PPE…

Abstract

Purpose

Firefighter Personal Protective Equipment (PPE) is the only barrier between the firefighter and hazardous environment. Gloves are a crucial component of the multi-component PPE. Over time the gloves have reduced the intensity of hand injuries, yet further improvement in terms of material selection and glove design is required to strike the balance between protection and comfort. Focusing on the material aspect, the purpose of this study is to present literature analysis on material selection and testing for firefighter gloves.

Design/methodology/approach

The study conducted a literature analysis on material selection and characterization of firefighter PPE. The review summarizes and evaluates past work addressing the characterization of firefighter gloves in accordance with NFPA 1971 requirements and points out found research gaps to aid with foundation of future research.

Findings

The study summarizes several research works to inform readers about the material selection and characterization of firefighter gloves. Based on the analyzed literature, the study resulted in material specification sheets for firefighter gloves. The developed material specification sheets provide information in terms of crucial material properties to be incorporated for accurate functioning of firefighter gloves, testing methods to validate those material properties and materials from analyzed literature exhibiting desired properties.

Originality/value

With large research addressing firefighter PPE, only limited studies focus specifically on gloves. Thus, this study provides a literature analysis covering material selection and testing for gloves. A consolidated firefighter gloves material specification document, which does not appear to be available in the literature, will provide a foundation for the development and characterization of firefighter gloves to better serve the functions along with ensuring user comfort.

Details

International Journal of Clothing Science and Technology, vol. 36 no. 2
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 2 April 2024

Shilpi Aggarwal

Everyone is extremely concerned about environmental protection and health safety due to the rise in living standards. Plant-derived natural dyes have garnered much industrial…

Abstract

Purpose

Everyone is extremely concerned about environmental protection and health safety due to the rise in living standards. Plant-derived natural dyes have garnered much industrial attention in food, pharmaceutical, textile, cosmetics, etc. owing to their health and environmental benefits. The present study aims to focus on the elimination of the use of synthetic dyes and provides brief information about natural dyes, their sources, extraction procedures with characterization and various advantages and disadvantages.

Design/methodology/approach

In producing natural colors, extraction and purification are essential steps. Various conventional methods used till date have a low yield, as these consume a lot of solvent volume, time, labor and energy or may destroy the coloring behavior of the actual molecules. The establishment of proper characterization and certification protocols for natural dyes would improve the yielding of natural dyes and benefit both producers and users.

Findings

However, scientists have found modern extraction methods to obtain maximum color yield. They are also modifying the fabric surface to appraise its uptake behavior of color. Various extraction techniques such as solvent, aqueous, enzymatic and fermentation and extraction with microwave or ultrasonic energy, supercritical fluid extraction and alkaline or acid extraction are currently available for these natural dyes and are summarized in the present review article.

Originality/value

If natural dye availability can be increased by the different extraction measures and the cost of purified dyes can be brought down with a proper certification mechanism, there is a wide scope for the adoption of these dyes by small-scale dyeing units.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Open Access
Article
Publication date: 26 March 2024

Sergio de la Rosa, Pedro F. Mayuet, Cátia S. Silva, Álvaro M. Sampaio and Lucía Rodríguez-Parada

This papers aims to study lattice structures in terms of geometric variables, manufacturing variables and material-based variants and their correlation with compressive behaviour…

Abstract

Purpose

This papers aims to study lattice structures in terms of geometric variables, manufacturing variables and material-based variants and their correlation with compressive behaviour for their application in a methodology for the design and development of personalized elastic therapeutic products.

Design/methodology/approach

Lattice samples were designed and manufactured using extrusion-based additive manufacturing technologies. Mechanical tests were carried out on lattice samples for elasticity characterization purposes. The relationships between sample stiffness and key geometric and manufacturing variables were subsequently used in the case study on the design of a pressure cushion model for validation purposes. Differentiated areas were established according to patient’s pressure map to subsequently make a correlation between the patient’s pressure needs and lattice samples stiffness.

Findings

A substantial and wide variation in lattice compressive behaviour was found depending on the key study variables. The proposed methodology made it possible to efficiently identify and adjust the pressure of the different areas of the product to adapt them to the elastic needs of the patient. In this sense, the characterization lattice samples turned out to provide an effective and flexible response to the pressure requirements.

Originality/value

This study provides a generalized foundation of lattice structural design and adjustable stiffness in application of pressure cushions, which can be equally applied to other designs with similar purposes. The relevance and contribution of this work lie in the proposed methodology for the design of personalized therapeutic products based on the use of individual lattice structures that function as independent customizable cells.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 29 July 2022

Khaled Mostafa, Mohamed Ramadan and Azza El-Sanabary

This study aims to address a comprehensive and integrated investigations pertaining to the preparation of AgNPs with well-defined nano-sized scale using the aforementioned poly…

Abstract

Purpose

This study aims to address a comprehensive and integrated investigations pertaining to the preparation of AgNPs with well-defined nano-sized scale using the aforementioned poly (meth acrylic acid [MAA])–chitosan graft copolymer, which is cheap, nontoxic, biodegradable and biocompatible agent as a substitute for the traditionally used toxic reducing agents.

Design/methodology/approach

AgNPs are prepared under a range of conditions, containing silver nitrate and poly (MAA)–chitosan graft copolymer concentrations, time, temperature and pH of the preparation medium. To classify AgNPs obtained under the various conditions, ultraviolet–visible spectroscopy spectra and transmission electron microscopy images are used for characterization of AgNPs instrumentally in addition to the visual color change throughout the work. The work was further extended to study the application of the so prepared AgNPs on cotton fabric to see their suitability as antibacterial agent as well as their durability after certain washing cycles.

Findings

According to the current investigation, the optimal conditions for AgNPs formation of nearly 3–15 nm in size are 5 g/l, poly (MAA)–chitosan graft copolymer and 300 ppm AgNO3 in addition to carrying out the reaction at 60°C for 30 min at pH 12. Besides, the application of the so prepared AgNPs on cotton fabric displayed a substantial reduction in antibacterial efficiency against gram-positive and gram-negative bacteria estimated even after 10 washing cycles in comparison with untreated one.

Originality/value

To the best of the authors’ information, no comprehensive study of the synthesis of AgNPs using poly (MAA)–chitosan graft copolymer with a graft yield of 48% has been identified in the literature.

Details

Pigment & Resin Technology, vol. 53 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 15 July 2022

Wiah Wardiningsih, Sandra Efendi, Rr. Wiwiek Mulyani, Totong Totong, Ryan Rudy and Samuel Pradana

This study aims to characterize the properties of natural cellulose fiber from the pseudo-stems of the curcuma zedoaria plant.

Abstract

Purpose

This study aims to characterize the properties of natural cellulose fiber from the pseudo-stems of the curcuma zedoaria plant.

Design/methodology/approach

The fiber was extracted using the biological retting process (cold-water retting). The intrinsic fiber properties obtained were used to evaluate the possibility of using fiber for textile applications.

Findings

The average length of a curcuma zedoaria fiber was 34.77 cm with a fineness value of 6.72 Tex. A bundle of curcuma zedoaria fibers was comprised of many elementary fibers. Curcuma zedoaria had an irregular cross-section, with the lumen having a varied oval shape. Curcuma zedoaria fibers had tenacity and elongation value of 3.32 gf/denier and 6.95%, respectively. Curcuma zedoaria fibers had a coefficient of friction value of 0.46. Curcuma zedoaria fibers belong to a hygroscopic fiber type with a moisture regain value of 10.29%.

Originality/value

Extraction and Characterization of Curcuma zedoaria Pseudo-stems Fibers for Textile Application.

Article
Publication date: 9 April 2024

Kunal Kumar Singh, Santosh Kumar Mahto and Rashmi Sinha

The purpose of this study is to introduce a new type of sensor which uses microwave metamaterials and direct-coupled split-ring resonators (DC-SRRs) to measure the dielectric…

Abstract

Purpose

The purpose of this study is to introduce a new type of sensor which uses microwave metamaterials and direct-coupled split-ring resonators (DC-SRRs) to measure the dielectric properties of solid materials in real time. The sensor uses a transmission line with a bridge-type structure to measure the differential frequency, which can be used to calculate the dielectric constant of the material being tested. The study aims to establish an empirical relationship between the dielectric properties of the material and the frequency measurements obtained from the sensor.

Design/methodology/approach

In the proposed design, the opposite arm of the bridge transmission line is loaded by DC-SRRs, and the distance between DC-SRRs is optimized to minimize the mutual coupling between them. The DC-SRRs are loaded with the material under test (MUT) to perform differential permittivity sensing. When identical MUT is placed on both resonators, a single transmission zero (notch) is obtained, but non-identical MUTs exhibit two split notches. For the design of differential sensors and comparators based on symmetry disruption, frequency splitting is highly useful.

Findings

The proposed structure is demonstrated using electromagnetic simulation, and a prototype of the proposed sensor is fabricated and experimentally validated to prove the differential sensing principle. Here, the sensor is analyzed for sensitivity by using different MUTs with relative permittivity ranges from 1.006 to 10 and with a fixed dimension of 9 mm × 10 mm ×1.2 mm. It shows a very good average frequency deviation per unit change in permittivity of the MUTs, which is around 743 MHz, and it also exhibits a very high average relative sensitivity and quality factor of around 11.5% and 323, respectively.

Originality/value

The proposed sensor can be used for differential characterization of permittivity and also as a comparator to test the purity of solid dielectric samples. This sensor most importantly strengthens robustness to environmental conditions that cause cross-sensitivity or miscalibration. The accuracy of the measurement is enhanced as compared to conventional single- and double-notch metamaterial-based sensors.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

1 – 10 of over 1000