Search results

1 – 10 of 62
To view the access options for this content please click here
Book part
Publication date: 15 January 2010

Chandra R. Bhat and Naveen Eluru

Many consumer choice situations are characterized by the simultaneous demand for multiple alternatives that are imperfect substitutes for one another. A simple and…

Abstract

Many consumer choice situations are characterized by the simultaneous demand for multiple alternatives that are imperfect substitutes for one another. A simple and parsimonious multiple discrete-continuous extreme value (MDCEV) econometric approach to handle such multiple discreteness was formulated by Bhat (2005) within the broader Kuhn–Tucker (KT) multiple discrete-continuous economic consumer demand model of Wales and Woodland (1983). In this chapter, the focus is on presenting the basic MDCEV model structure, discussing its estimation and use in prediction, formulating extensions of the basic MDCEV structure, and presenting applications of the model. The paper examines several issues associated with the MDCEV model and other extant KT multiple discrete-continuous models. Specifically, the paper discusses the utility function form that enables clarity in the role of each parameter in the utility specification, presents identification considerations associated with both the utility functional form as well as the stochastic nature of the utility specification, extends the MDCEV model to the case of price variation across goods and to general error covariance structures, discusses the relationship between earlier KT-based multiple discrete-continuous models, and illustrates the many technical nuances and identification considerations of the multiple discrete-continuous model structure. Finally, we discuss the many applications of MDCEV model and its extensions in various fields.

Details

Choice Modelling: The State-of-the-art and The State-of-practice
Type: Book
ISBN: 978-1-84950-773-8

To view the access options for this content please click here

Abstract

Details

Handbook of Transport Modelling
Type: Book
ISBN: 978-0-08-045376-7

To view the access options for this content please click here
Book part
Publication date: 29 January 2013

Konstadinos G. Goulias, Ram M. Pendyala and Chandra R. Bhat

Purpose — In this paper we describe a total design data collection method (expanding the definition of the usual “total design” terminology used in typical household…

Abstract

Purpose — In this paper we describe a total design data collection method (expanding the definition of the usual “total design” terminology used in typical household travel surveys) to emphasize the need to describe individual and group behaviors embedded within their spatial, temporal, and social contexts.

Methodology/approach — We first offer an overview of recently developed modeling and simulation applications predominantly in North America followed by a summary of the data needs in typical modeling and simulation modules for statewide and regional travel demand forecasting. We then proceed to describe an ideal data collection scheme with core and satellite survey components that can inform current and future model building. Mention is also made to the currently implemented California Household Travel Survey that brings together multiple agencies, modeling goals, and data collection component surveys.

Findings — The preparation of this paper involved reviewing emerging transportation modeling approaches and paradigms, policy questions, and behavioral issues and considerations that are important in the multimodal transportation planning context. It was found that many of the questions being asked of policy makers in the transportation domain require a deep understanding of the interactions and constraints under which individuals make activity-travel choices, the learning processes at play, and the attitudes and perceptions that shape ways in which people adjust their travel behavior in response to policy interventions. Based on the work, it was found that many of the traditional travel survey designs are not able to provide the comprehensive data needed to estimate activity-based model systems that truly capture the full range of behavioral considerations and phenomena of importance.

Originality/value of paper — This paper offers a review of the emerging transportation modeling approaches and behavioral paradigms of importance in activity-based travel demand forecasting. The paper discusses how traditional travel survey designs are inadequate to meet the data needs of emerging modeling approaches. Based on a review of all of the data needs and new data collection methods that are making it possible to observe a full range of human behaviors, the paper offers a total survey data collection design that brings together many different surveys and data collection protocols. The core household travel survey is augmented by a full slate of special purpose surveys that together yield a rich behavioral database for activity-based microsimulation modeling. The paper is a valuable reference for transportation planners and modelers interested in developing data collection enterprises that will feed the next generation of transportation models.

Details

Transport Survey Methods
Type: Book
ISBN: 978-1-78-190288-2

Keywords

To view the access options for this content please click here
Book part
Publication date: 14 September 2007

Chandra R. Bhat and Abdul Rawoof Pinjari

Abstract

Details

Handbook of Transport Modelling
Type: Book
ISBN: 978-0-08-045376-7

To view the access options for this content please click here

Abstract

Details

Transport Science and Technology
Type: Book
ISBN: 978-0-08-044707-0

To view the access options for this content please click here
Book part
Publication date: 21 December 2010

Chandra R. Bhat, Cristiano Varin and Nazneen Ferdous

This chapter compares the performance of the maximum simulated likelihood (MSL) approach with the composite marginal likelihood (CML) approach in multivariate…

Abstract

This chapter compares the performance of the maximum simulated likelihood (MSL) approach with the composite marginal likelihood (CML) approach in multivariate ordered-response situations. The ability of the two approaches to recover model parameters in simulated data sets is examined, as is the efficiency of estimated parameters and computational cost. Overall, the simulation results demonstrate the ability of the CML approach to recover the parameters very well in a 5–6 dimensional ordered-response choice model context. In addition, the CML recovers parameters as well as the MSL estimation approach in the simulation contexts used in this study, while also doing so at a substantially reduced computational cost. Further, any reduction in the efficiency of the CML approach relative to the MSL approach is in the range of nonexistent to small. When taken together with its conceptual and implementation simplicity, the CML approach appears to be a promising approach for the estimation of not only the multivariate ordered-response model considered here, but also for other analytically intractable econometric models.

Details

Maximum Simulated Likelihood Methods and Applications
Type: Book
ISBN: 978-0-85724-150-4

To view the access options for this content please click here
Book part
Publication date: 15 January 2010

Abstract

Details

Choice Modelling: The State-of-the-art and The State-of-practice
Type: Book
ISBN: 978-1-84950-773-8

To view the access options for this content please click here
Book part
Publication date: 29 January 2013

Abstract

Details

Transport Survey Methods
Type: Book
ISBN: 978-1-78-190288-2

To view the access options for this content please click here
Book part
Publication date: 21 December 2010

Abstract

Details

Maximum Simulated Likelihood Methods and Applications
Type: Book
ISBN: 978-0-85724-150-4

To view the access options for this content please click here
Book part
Publication date: 21 December 2010

William Greene

Simulation-based methods and simulation-assisted estimators have greatly increased the reach of empirical applications in econometrics. The received literature includes a…

Abstract

Simulation-based methods and simulation-assisted estimators have greatly increased the reach of empirical applications in econometrics. The received literature includes a thick layer of theoretical studies, including landmark works by Gourieroux and Monfort (1996), McFadden and Ruud (1994), and Train (2003), and hundreds of applications. An early and still influential application of the method is Berry, Levinsohn, and Pakes's (1995) (BLP) application to the U.S. automobile market in which a market equilibrium model is cleared of latent heterogeneity by integrating the heterogeneity out of the moments in a GMM setting. BLP's methodology is a baseline technique for studying market equilibrium in empirical industrial organization. Contemporary applications involving multilayered models of heterogeneity in individual behavior such as that in Riphahn, Wambach, and Million's (2003) study of moral hazard in health insurance are also common. Computation of multivariate probabilities by using simulation methods is now a standard technique in estimating discrete choice models. The mixed logit model for modeling preferences (McFadden & Train, 2000) is now the leading edge of research in multinomial choice modeling. Finally, perhaps the most prominent application in the entire arena of simulation-based estimation is the current generation of Bayesian econometrics based on Markov Chain Monte Carlo (MCMC) methods. In this area, heretofore intractable estimators of posterior means are routinely estimated with the assistance of simulation and the Gibbs sampler.

Details

Maximum Simulated Likelihood Methods and Applications
Type: Book
ISBN: 978-0-85724-150-4

1 – 10 of 62