Search results
1 – 1 of 1Soha Rawas, Cerine Tafran and Duaa AlSaeed
Accurate diagnosis of brain tumors is crucial for effective treatment and improved patient outcomes. Magnetic resonance imaging (MRI) is a common method for detecting brain…
Abstract
Purpose
Accurate diagnosis of brain tumors is crucial for effective treatment and improved patient outcomes. Magnetic resonance imaging (MRI) is a common method for detecting brain malignancies, but interpreting MRI data can be challenging and time-consuming for healthcare professionals.
Design/methodology/approach
An innovative method is presented that combines deep learning (DL) models with natural language processing (NLP) from ChatGPT to enhance the accuracy of brain tumor detection in MRI scans. The method generates textual descriptions of brain tumor regions, providing clinicians with valuable insights into tumor characteristics for informed decision-making and personalized treatment planning.
Findings
The evaluation of this approach demonstrates promising outcomes, achieving a notable Dice coefficient score of 0.93 for tumor segmentation, outperforming current state-of-the-art methods. Human validation of the generated descriptions confirms their precision and conciseness.
Research limitations/implications
While the method showcased advancements in accuracy and understandability, ongoing research is essential for refining the model and addressing limitations in segmenting smaller or atypical tumors.
Originality/value
These results emphasized the potential of this innovative method in advancing neuroimaging practices and contributing to the effective detection and management of brain tumors.
Details