Search results

1 – 10 of 92
Article
Publication date: 20 March 2023

Emad S. Shafik, Nehad N. Rozik, Nadia F. Youssef and Salwa L. Abd-El-Messieh

The purpose of this study is to utilize two types of gypsum mold wastes from two different factories as novel and economical reinforcing fillers for composites that may be useful…

Abstract

Purpose

The purpose of this study is to utilize two types of gypsum mold wastes from two different factories as novel and economical reinforcing fillers for composites that may be useful for building materials and floors. Two types of gypsum mold wastes from two different factories as raw materials were incorporated into linear low density polyethylene (LLDPE) aiming to get rid of that waste in one hand and obtaining useful economical composites suitable for building materials and floors.

Design/methodology/approach

Composites were prepared from two types of gypsum mold wastes substituted with different ratios from raw gypsum and LLDPE throughout the melt blending technique. The physico-mechanical and electrical investigations in addition to the morphology of the composites were included.

Findings

The mechanical results illustrate that substituting commercial gypsum with gypsum mold waste positively affects tensile strength, flexural strength and hardness shore D for the LLDPE composites. The tensile strength increased from 5 MPa for LLDPE filled with commercial gypsum as blank samples to 11.2 and 13.2 MPa for LLDPE filled with D and S waste. Also, electrical properties which include both permittivity ɛ′ and dielectric loss ɛ″ increased with increasing the waste content in the LLDPE matrix. In addition to the electrical conductivity values, σ lies in the order of insulation materials. Consequently, it is possible to produce materials with a gypsum matrix by adding industrial waste, improving the behavior of the traditional gypsum and enabling those composites to be applied in various construction applications as eco-friendly tiles.

Originality/value

This study aims to prepare eco-friendly composites based on LLDPE and waste gypsum mold to preserve resources for the coming generations, other than lowering the environmental footprint and saving the costs of getting rid of it.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 30 October 2023

Oluseyi Julius Adebowale and Justus Ngala Agumba

The United Nations has demonstrated a commitment to preserving the ecosystem through its 2030 sustainable development goals agenda. One crucial objective of these goals is to…

Abstract

Purpose

The United Nations has demonstrated a commitment to preserving the ecosystem through its 2030 sustainable development goals agenda. One crucial objective of these goals is to promote a healthy ecosystem and discourage practices that harm it. Building materials production significantly contributes to the emissions of greenhouse gases. This poses a threat to the ecosystem and prompts a growing demand for sustainable building materials (SBMs). The purpose of this study is to investigate SBMs to determine their utilization in construction operations and the potential impact their application could have on construction productivity.

Design/methodology/approach

A systematic review of the existing literature in the field of SBMs was conducted for the study. The search strings used were “sustainable” AND (“building” OR “construction”) AND “materials” AND “productivity”. A total of 146 articles were obtained from the Scopus database and reviewed.

Findings

Bio-based, cementitious and phase change materials were the main categories of SBMs. Materials in these categories have the potential to substantially contribute to sustainability in the construction sector. However, challenges such as availability, cost, expertise, awareness, social acceptance and resistance to innovation must be addressed to promote the increased utilization of SBMs and enhance construction productivity.

Originality/value

Many studies have explored SBMs, but there is a dearth of studies that address productivity in the context of SBMs, which leaves a gap in understanding. This study addresses this gap by drawing on existing studies to determine the potential implications that using SBMs could have on construction productivity.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 5 May 2023

Rakesh Sai Kumar Mandala and R. Ramesh Nayaka

This paper aims to identify modern construction techniques for affordable housing, such as prefabrication and interlocking systems, that can save time and cost while also…

Abstract

Purpose

This paper aims to identify modern construction techniques for affordable housing, such as prefabrication and interlocking systems, that can save time and cost while also providing long-term sustainable benefits that are desperately needed in today's construction industry.

Design/methodology/approach

The need for housing is growing worldwide, but traditional construction cannot cater to the demand due to insufficient time. There should be some paradigm shift in the construction industry to supply housing to society. This paper presented a state-of-the-art review of modern construction techniques practiced worldwide and their advantages in affordable housing construction by conducting a systematic literature review and applying the backward snowball technique. The paper reviews modern prefabrication techniques and interlocking systems such as modular construction, formwork systems, light gauge steel/cold form steel construction and sandwich panel construction, which have been globally well practiced. It was understood from the overview that modular construction, including modular steel construction and precast concrete construction, could reduce time and costs efficiently. Further enhancement in the quality was also noticed. Besides, it was observed that light gauge steel construction is a modern phase of steel that eases construction execution efficiently. Modern formwork systems such as Mivan (Aluminium Formwork) have been reported for their minimum construction time, which leads to faster construction than traditional formwork. However, the cost is subjected to the repetitions of the formwork. An interlocking system is an innovative approach to construction that uses bricks made of sustainable materials such as earth that conserve time and cost.

Findings

The study finds that the prefabrication techniques and interlocking system have a lot of unique attributes that can enable the modern construction sector to flourish. The study summarizes modern construction techniques that can save time and cost, enhancing the sustainability of construction practices, which is the need of the Indian construction industry in particular.

Research limitations/implications

This study is limited to identifying specific modern construction techniques for time and cost savings, lean concepts and sustainability which are being practiced worldwide.

Practical implications

Modern formwork systems such as Mivan (Aluminium Formwork) have been reported for their minimum construction time which leads to faster construction than traditional formwork.

Social implications

The need for housing is growing rapidly all over the world, but traditional construction cannot cater to the need due to insufficient time. There should be some paradigm shift in the construction industry to supply housing to society.

Originality/value

This study is unique in identifying specific modern construction techniques for time and cost savings, lean concepts and sustainability which are being practiced worldwide.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 13 February 2024

Federico Lanzalonga, Roberto Marseglia, Alberto Irace and Paolo Pietro Biancone

Our study examines how artificial intelligence (AI) can enhance decision-making processes to promote circular economy practices within the utility sector.

Abstract

Purpose

Our study examines how artificial intelligence (AI) can enhance decision-making processes to promote circular economy practices within the utility sector.

Design/methodology/approach

A unique case study of Alia Servizi Ambientali Spa, an Italian multi-utility company using AI for waste management, is analyzed using the Gioia method and semi-structured interviews.

Findings

Our study discovers the proactive role of the user in waste management processes, the importance of economic incentives to increase the usefulness of the technology and the role of AI in waste management transformation processes (e.g. glass waste).

Originality/value

The present study enhances the circular economy model (transformation, distribution and recovery), uncovering AI’s role in waste management. Finally, we inspire managers with algorithms used for data-driven decisions.

Details

Management Decision, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0025-1747

Keywords

Article
Publication date: 11 August 2023

Hanadi Al-Zubaidi and Rabab Allouzi

Cement can be replaced to reduce the energy consumption and the environmental impact of cement. Also, foamed concrete can be used structurally in residential buildings to reduce…

Abstract

Purpose

Cement can be replaced to reduce the energy consumption and the environmental impact of cement. Also, foamed concrete can be used structurally in residential buildings to reduce weight and improve thermal insulation. To achieve these two goals, this paper aims to investigate the effect of basalt powder as a partial replacement of either cement or sand.

Design/methodology/approach

This paper investigates the effect of basalt powder as a partial replacement of either cement or sand on the mechanical properties of foamed concrete used to cast slabs. First, mechanical properties of foamed concrete are tested with and without replacement of basalt. Then, six slabs of different thicknesses and mixes are investigated. The thicknesses considered are 150- and 200-mm slabs. The three mixes used to construct these slabs are foamed concrete with no basalt powder, foamed concrete with replacement of 20% of cement by basalt powder and foamed concrete with replacement of 20% of sand by basalt powder. The flexural behavior of these slabs is investigated.

Findings

All the slabs failed in the commonly intended flexural mode. The results show that the basalt powder acted as a strong filler material in the foamed concrete mix based on mechanical properties and flexural behavior. The proposed foamed concrete slabs can be used structurally in residential buildings.

Originality/value

A natural waste material that can be used to promote energy efficiency and reduce emission is basalt. In this paper, basalt powder is suggested to be used due to its chemical composition that is similar to cement. Also, basalt powder is low in cost as it is waste, while basalt aggregate is prepared, and it is only used as filler in paved roads. Accordingly, basalt is partially used instead of cement to reduce the emission of carbon dioxide that results from the cement manufacturing. Also, it is used as a partial alternative to sand which can be considered as a new stronger source as filling material used in the production of concrete.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 2 May 2023

Rohini Suresh Sawalkar, Swapnil Undale, Sonal Muluk, Girish Mude, Vimal Deep Saxena and Srinivas Pasumarti

Individuals generate plenty of waste that is affecting the life while consumption of air and water at the base. The increasing industrialization, population and waste generation…

Abstract

Purpose

Individuals generate plenty of waste that is affecting the life while consumption of air and water at the base. The increasing industrialization, population and waste generation without proper measures of waste management are leading to major challenges to environmental sustainability. Considering these challenges, the present study focuses on the types and sources of waste generation and waste reduction by encouraging the reduction, recycling and reuse of waste products. The study aims to provide a well-functioning sustainable waste management system, that incorporates feedback loops, focuses on processes, embodies adaptability and diverts waste from disposal.

Design/methodology/approach

The university under study is situated at the central location of Pune City in India. The university has diverse units like academic and admin buildings, canteens and mess, hostels, a clinic, workshops and gardens. To fulfil the objective of this study a qualitative case study approach of research was adopted. A total of thirty-three representatives and waste management personnel from various units of the university were interviewed. The interviews were semi-structured and the duration of it was around 25–55 min. The interview transcripts were coded, and qualitative analysis was conducted.

Findings

This study proposes a strategic sustainable waste management model for environmental sustainability that brings circularity by closing the loops and focusing on sustainable development goals.

Practical implications

The findings of this research can guide universities to manage the waste generated through various sources and attain sustainable development goals and environmental sustainability at large by closing the loops. The study provides insights into waste management and environmental sustainability. The universities can make their resources more circular by following the strategies of reducing, reusing and recycling (3R). This study recommends customization according to the needs of specific universities and institutions. Researchers can take this study further by testing and customizing it as per requirement. Also, an effort can be extended to implement the model in other related areas.

Originality/value

This research is a unique attempt to advance knowledge of waste management practices for sustainable development by exploring different techniques opted by for individual entities from the university campus to understand the environmental impact.

Details

Management of Environmental Quality: An International Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1477-7835

Keywords

Article
Publication date: 22 August 2023

Jamal Khatib, Lelian ElKhatib, Joseph Assaad and Adel El Kordi

The purpose of this paper is to examine the use of phragmites australis ash (PAA) in cementitious systems to achieve sustainable construction.

Abstract

Purpose

The purpose of this paper is to examine the use of phragmites australis ash (PAA) in cementitious systems to achieve sustainable construction.

Design/methodology/approach

In this paper, the properties of mortar containing PAA as partial cement replacement are determined. The PAA is produced through slow burning in a closed system to minimize the CO2 emission. A total of four mortar mixes are prepared with PAA replacement levels ranging from 0% to 30% by weight. The water to binder and the proportions of binder to sand are 0.55 and 1:3 by weight, respectively. The properties tested are density, compressive strength, flexural strength, ultrasonic pulse velocity, water absorption by total immersion and capillary rise. Testing is conducted at 1, 7, 28 and 90 days.

Findings

While there is a decrease in strength as the amount of PAA increases, there is strong indication of pozzolanic reaction in the presence of PAA. This is in agreement with the results reported by Salvo et al. (2015), where they found noticeable pozzolanic activities in the presence of straw ash, which is rich in SiO2 and relatively high K2O content. At 90 days of curing, there is a decrease of 5% in compressive strength at 10% PAA replacement. However, at 20% and 30% replacement, the reduction in compressive strength is 23% and 32%, respectively. The trend in flexural strength and ultrasonic pulse velocity is similar to that in compressive strength. The water absorption by total immersion and capillary rise tends to increase with increasing amounts of PAA in the mix. There seems to be a linear relationship between water absorption and compressive strength at each curing age.

Research limitations/implications

The Phragmites australis plant used in this investigation is obtained from one location and this present a limitation as the type of soil may change the properties. Also one method of slow burning is used. Different burning methods may alter the composition of the PAA.

Practical implications

This outcome of this research will contribute towards sustainable development as it will make use of the waste generated, reduce the amount of energy-intensive cement used in construction and help generate local employment in the area where the Phragmites australis plant grows.

Originality/value

To the best knowledge of the authors, the ash from the Phragmites australis plant has not been used in cementitious system and this research can be considered original as it examines the properties of mortar containing PAA. Also, the process of burning in a closed system using this material.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 2 February 2024

Nilesh R. Parmar, Sanjay R. Salla, Hariom P. Khungar and B. Kondraivendhan

This study aims to characterize the behavior of blended concrete, including metakaolin (MK) and quarry dust (QD), as supplementary cementing materials. The study focuses on…

Abstract

Purpose

This study aims to characterize the behavior of blended concrete, including metakaolin (MK) and quarry dust (QD), as supplementary cementing materials. The study focuses on evaluating the effects of these materials on the fresh and hardened properties of concrete.

Design/methodology/approach

MK, a pozzolanic material, and QD, a fine aggregate by-product, are potentially sustainable alternatives for enhancing concrete performance and reducing environmental impact. The addition of different percentages of MK enhances the pozzolanic reaction, resulting in improved strength development. Furthermore, the optimum dosage of MK, mixed with QD, and mechanical properties like compressive, flexural and split tensile strength of concrete were evaluated to investigate the synergetic effect of MK and quarry dust for M20-grade concrete.

Findings

The results reveal the influence of metakaolin and QD on the overall performance of blended concrete. Cost analysis showed that the optimum mix can reduce the 7%–8% overall cost of the materials for M20-grade concrete. Energy analysis showed that the optimum mix can reduce 7%–8% energy consumption.

Originality/value

The effective utilization is determined with the help of the analytical hierarchy process method to find an optimal solution among the selected criteria. According to the AHP analysis, the optimum content of MK and quarry dust is 12% and 16%, respectively, performing best among all other trial mixes.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 26 July 2023

Hamdy Mohamed Mohamed and Wael Sabry Mohamed

The study aims to assess the efficiency of nanocomposite to improve the properties of gap-filling materials for pottery artifacts.

Abstract

Purpose

The study aims to assess the efficiency of nanocomposite to improve the properties of gap-filling materials for pottery artifacts.

Design/methodology/approach

Five different pastes were used in the laboratory studies. The pastes consist mainly of pottery powder (grog), dental plaster, microballoons and an adhesive of Primal AC33, nano-silica and nano kaolinite in various concentrations. The prepared samples were subjected to accelerated heat and light aging. Besides, some investigations were used to evaluate the efficacy of the additive nanomaterials, such as TEM, digital and scanning electron microscopy microscopes. Contact angle, color change, shrinkage degree, physical properties and compressive strength tests were also conducted.

Findings

The results indicated that using Nano-silica considerably improves the mechanical strength and decreases the shrinkage of gap-filling materials. According to the results, a mixture of grog, microballoons and Primal AC33/Nano-silica Nanocomposites is the optimal gap-filling paste for archaeological pottery. Moreover, this paste showed a higher contact angle (120°), lower color change (ΔE = 2.62), lower shrinkage (3.3%), lower water absorption (3.36%), lower porosity (5.05%) and higher compressive strength (5124 N/mm2).

Originality/value

This paper attains to develop an economic polymer-nanocomposite that can be used with gap-filling materials for pottery artifacts.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 7 March 2023

Аleksandr Viktorovich Zaichuk, Аleksandra Andreevna Amelina and Yurii Sergeevich Hordieiev

The purpose of this study was to the low-temperature synthesis of cobalt-containing diopside pigments based on granulated blast furnace slag and to study the characteristics of…

Abstract

Purpose

The purpose of this study was to the low-temperature synthesis of cobalt-containing diopside pigments based on granulated blast furnace slag and to study the characteristics of the mineral formation processes, changes in the structure and colour indices.

Design/methodology/approach

Synthesis of cobalt-containing diopside pigments based was carried out by the directional formation of the mineralogical composition with the introduction of part of the components using granulated blast-furnace slag.

Findings

It has been established that the formation of the diopside phase in pigments containing blast-furnace slag as the main component proceeds at low temperatures (1,100°C–1,150 °C). The colour of diopside pigments is formed because of the isomorphic substitution of Si4+ ions for Al3+ ions and Mg2+ ions for Co2+ ions. It is expedient to add CoO in an amount of 0.9 mol (18 Wt.%) into the composition of diopside pigments based on blast-furnace slag to obtain defect-free violet glazes.

Practical implications

The developed diopside pigments enable obtaining of high-quality violet glazes for ceramics. The application of the obtained results can significantly reduce the consumption of traditional raw materials in the composition of silicate ceramic pigments, as well as reduce their firing temperature.

Originality/value

Calcium, magnesium and silicon oxides are the main components of blast-furnace slag. In addition, granulated blast furnace slag is mainly represented by the glassy phase, which determines its high activity during the firing process. These factors are prerequisites for using the blast-furnace slag as a valuable substitute for chemically pure or natural raw materials in silicate pigments and reducing their firing temperature.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 10 of 92