Search results

1 – 7 of 7
Article
Publication date: 6 November 2017

Yuqing Xie, Lin Li and Shuaibing Wang

To reduce the computational scale for quasi-magnetostatic problems, model order reduction is a good option. Reduced-order modelling techniques based on proper orthogonal…

Abstract

Purpose

To reduce the computational scale for quasi-magnetostatic problems, model order reduction is a good option. Reduced-order modelling techniques based on proper orthogonal decomposition (POD) and centroidal Voronoi tessellation (CVT) have been used to solve many engineering problems. The purpose of this paper is to investigate the computational principle, accuracy and efficiency of the POD-based and the CVT-based reduced-order method when dealing with quasi-magnetostatic problems.

Design/methodology/approach

The paper investigates computational features of the reduced-order method based on POD and CVT methods for quasi-magnetostatic problems. Firstly the construction method for the POD and the CVT reduced-order basis is introduced. Then, a reduced model is constructed using high-fidelity finite element solutions and a Galerkin projection. Finally, the transient quasi-magnetostatic problem of the TEAM 21a model is studied with the proposed reduced-order method.

Findings

For the TEAM 21a model, the numerical results show that both POD-based and CVT-based reduced-order approaches can greatly reduce the computational time compared with the full-order finite element method. And the results obtained from both reduced-order models are in good agreement with the results obtained from the full-order model, while the computational accuracy of the POD-based reduced-order model is a little higher than the CVT-based reduced-order model.

Originality/value

The CVT method is introduced to construct the reduced-order model for a quasi-magnetostatic problem. The computational accuracy and efficiency of the presented approaches are compared.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 36 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 24 May 2013

Marc Guénot, Ingrid Lepot, Caroline Sainvitu, Jordan Goblet and Rajan Filomeno Coelho

The purpose of this paper is to propose a novel contribution to adaptive sampling strategies for non‐intrusive reduced order models based on Proper Orthogonal Decomposition (POD)…

Abstract

Purpose

The purpose of this paper is to propose a novel contribution to adaptive sampling strategies for non‐intrusive reduced order models based on Proper Orthogonal Decomposition (POD). These strategies aim at reducing the cost of optimization by improving the efficiency and accuracy of POD data‐fitting surrogate models to be used in an online surrogate‐assisted optimization framework for industrial design.

Design/methodology/approach

The effect of the strategies on the model accuracy is investigated considering the snapshot scaling, the design of experiment size and the truncation level of the POD basis and compared to a state‐of‐the‐art radial basis function network surrogate model on objectives and constraints. The selected test case is a Mach number and angle of attack domain exploration of the well‐known RAE2822 airfoil. Preliminary airfoil shape optimization results are also shown.

Findings

The numerical results demonstrate the potential of the capture/recapture schemes proposed for adequately filling the parametric space and maximizing the surrogates relevance at minimum computational cost.

Originality/value

The proposed approaches help in building POD‐based surrogate models more efficiently.

Article
Publication date: 30 September 2019

Dan Zhao, Cun Xin, Tao Jin, Xiaopeng Yan, Shenggguo Ma and Zhihua Wang

The purpose of this study to analyze the plastic anisotropy of 6061 aluminum alloy with finite deformation using crystal plasticity finite element method.

Abstract

Purpose

The purpose of this study to analyze the plastic anisotropy of 6061 aluminum alloy with finite deformation using crystal plasticity finite element method.

Design/methodology/approach

A representative volume element (RVE) model was constructed by Voronoi tessellation. In this model, grain shapes, grain orientations and distribution of grains were involved. The mechanical response of the component under composite loading was tested using specify cruciform specimen. Moreover, different stress and strain states in the specific central region were analyzed to reveal the effects of complex loading.

Findings

We calculated the influence of misorientation of adjacent grains as well as the evolution of the micro structure’s plastic deformation on the macroscopic deformation of the structure. Geometry design for the cruciform specimen helps obtain a homogenous distribution of the stress and strain at the specimen center. In this process, the initial grain orientation is also an important factor, and the larger misorientations between special grains may cause greater stress concentration.

Originality/value

The influence of micro-scale factors on macro-scale plastic anisotropy of AA6061 is analyzed using RVE model and cruciform specimen, and they offer a reference for related research.

Details

Engineering Computations, vol. 37 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 10 January 2022

Adam Targui and Wagdi George Habashi

Responsible for lift generation, the helicopter rotor is an essential component to protect against ice accretion. As rotorcraft present a smaller wing cross-section and a lower…

Abstract

Purpose

Responsible for lift generation, the helicopter rotor is an essential component to protect against ice accretion. As rotorcraft present a smaller wing cross-section and a lower available onboard power compared to aircraft, electro-thermal heating pads are favored as they conform to the blades’ slender profile and limited volume. Their optimization is carried out here taking into account, for the first time, the highly three-dimensional (3D) nature of the flow and ice accretion, in contrast to the current state-of-the-art that is limited to two-dimensional (2D) airfoils.

Design/methodology/approach

Conjugate heat transfer simulation results are provided by the truly 3D finite element Navier–Stokes analysis package-ICE code, embedded in a proprietary rotorcraft simulation toolkit, with reduced-order modeling providing a time-efficient evaluation of the objective and constraint functions at every iteration. The proposed methodology optimizes heating pads extent and power usage and is versatile enough to address in a computationally efficient manner a wide variety of optimization formulations.

Findings

Low-error reduced-order modeling strategies are introduced to make the tackling of complex 3D geometries feasible in todays’ computers, with the developed framework applied to four problem formulations, demonstrating marked reductions to power consumption along with improved aerodynamics.

Originality/value

The present paper proposes a 3D framework for the optimization of electro-thermal rotorcraft ice protection systems, in hover and forward flight. The current state-of-the-art is limited to 2D airfoils.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 11 October 2011

Silvana Maria B. Afonso, Bernardo Horowitz and Marcelo Ferreira da Silva

The purpose of this paper is to propose physically based varying fidelity surrogates to be used in structural design optimization of space trusses. The main aim is to demonstrate…

Abstract

Purpose

The purpose of this paper is to propose physically based varying fidelity surrogates to be used in structural design optimization of space trusses. The main aim is to demonstrate its efficiency in reducing the number of high fidelity (HF) runs in the optimization process.

Design/methodology/approach

In this work, surrogate models are built for space truss structures. This study uses functional as well as physical surrogates. In the latter, a grid analogy of the space truss is used thereby reducing drastically the analysis cost. Global and local approaches are considered. The latter will require a globalization scheme (sequential approximate optimization (SAO)) to ensure convergence.

Findings

Physically based surrogates were proposed. Classical techniques, namely Taylor series and kriging, are also implemented for comparison purposes. A parameter study in kriging is necessary to select the best kriging model to be used as surrogate. A test case was considered for optimization and several surrogates were built. The CPU time is reduced when compared with the HF solution, for all surrogate‐based optimization performed. The best result was achieved combining the proposed physical model with additive corrections in a SAO strategy in which C1 continuity was imposed at each trust region center. Some guidance for other engineering applications was given.

Originality/value

This is the first time that physical‐based surrogates for optimum design of space truss systems are used in the SAO framework. Physical surrogates typically exhibit better generalization properties than other surrogates forms, produce faster solutions, and do not suffer from dimensionality curse when used in approximate optimization strategies.

Details

Engineering Computations, vol. 28 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 13 June 2019

Grégory Millot, Olivier Scholz, Saïd Ouhamou, Mathieu Becquet and Sébastien Magnabal

The paper deals with research activities to develop optimization workflows implying computational fluid dynamics (CFD) modelling. The purpose of this paper is to present an…

Abstract

Purpose

The paper deals with research activities to develop optimization workflows implying computational fluid dynamics (CFD) modelling. The purpose of this paper is to present an industrial and fully-automated optimal design tool, able to handle objectives, constraints, multi-parameters and multi-points optimization on a given CATIA CAD. The work is realized on Rapid And CostEffective Rotorcraft compound rotorcraft in the framework of the Fast RotorCraft Innovative Aircraft Demonstrator Platform (IADP) within the Clean Sky 2 programme.

Design/methodology/approach

The proposed solution relies on an automated CAD-CFD workflow called through the optimization process based on surrogate-based optimization (SBO) techniques. The SBO workflow has been specifically developed.

Findings

The methodology is validated on a simple configuration (bended pipe with two parameters). Then, the process is applied on a full compound rotorcraft to minimize the flow distortion at the engine entry. The design of the experiment and the optimization loop act on seven design parameters of the air inlet and for each individual the evaluation is performed on two operation points, namely, cruise flight and hover case. Finally, the best design is analyzed and aerodynamic performances are compared with the initial design.

Originality/value

The adding value of the developed process is to deal with geometric integration conflicts addressed through a specific CAD module and the implementation of a penalty function method to manage the unsuccessful evaluation of any individual.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 21 January 2019

Qisheng Wang, Boqing Gao and Hui Wu

Modern CAD systems facilitate the creation of any surface geometry imaginable, and complex surfaces for free-form grid shells are often represented by a set of Non-Uniform…

Abstract

Purpose

Modern CAD systems facilitate the creation of any surface geometry imaginable, and complex surfaces for free-form grid shells are often represented by a set of Non-Uniform Rational B-Splines surface patches. But it remains an intractable issue how to generate high-quality grids on complex surfaces efficiently. To solve this issue, an automatic triangular mesh generation method is presented, based on bubble dynamics simulation and a modified Delaunay method.

Design/methodology/approach

A moderate amount of points are first distributed on a given surface. Next, by regarding the points as elastic bubbles with the same size and introducing the forces acting on bubbles, the motion control equations of bubbles are established. The equilibrium state of the bubble system is found by Verlet algorithm. Then, the Voronoi diagram on the surface is obtained by calculating the intersection between the surface and the three-dimensional (3D) Voronoi diagram of the centers of bubbles. Finally, a triangular mesh, Delaunay triangulation on the surface, is determined based on the dual change of the Voronoi diagram.

Findings

This method generates meshes on the surface directly, unlike mapping-based methods, avoiding the mapping distortion. Examples are given to demonstrate the successful execution of this method. The result also illustrates that this method is applicable to various surfaces in high automation level and resultant meshes are highly uniform and well-shaped.

Originality/value

Thus, this method provides the convenience for the geometry design of complex free-form grid structure.

Details

Engineering Computations, vol. 36 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 7 of 7