Search results

1 – 10 of 55
Article
Publication date: 5 June 2017

Yijun Liu, Guiyong Zhang, Huan Lu and Zhi Zong

Due to the strong reliance on element quality, there exist some inherent shortcomings of the traditional finite element method (FEM). The model of FEM behaves overly stiff, and…

Abstract

Purpose

Due to the strong reliance on element quality, there exist some inherent shortcomings of the traditional finite element method (FEM). The model of FEM behaves overly stiff, and the solutions of automated generated linear elements are generally of poor accuracy about especially gradient results. The proposed cell-based smoothed point interpolation method (CS-PIM) aims to improve the results accuracy of the thermoelastic problems via properly softening the overly-stiff stiffness.

Design/methodology/approach

This novel approach is based on the newly developed G space and weakened weak (w2) formulation, and of which shape functions are created using the point interpolation method and the cell-based gradient smoothing operation is conducted based on the linear triangular background cells.

Findings

Owing to the property of softened stiffness, the present method can generally achieve better accuracy and higher convergence results (especially for the temperature gradient and thermal stress solutions) than the FEM does by using the simplest linear triangular background cells, which has been examined by extensive numerical studies.

Practical implications

The CS-PIM is capable of producing more accurate results of temperature gradients as well as thermal stresses with the automated generated and unstructured background cells, which make it a better candidate for solving practical thermoelastic problems.

Originality/value

It is the first time that the novel CS-PIM was further developed for solving thermoelastic problems, which shows its tremendous potential for practical implications.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 24 November 2021

Mingyang Liu, Guangjun Gao, Huifen Zhu and Chen Jiang

The purpose of this paper is to investigate the feasibility of solving turbulent flows based on smoothed finite element method (S-FEM). Then, the differences between S-FEM and…

Abstract

Purpose

The purpose of this paper is to investigate the feasibility of solving turbulent flows based on smoothed finite element method (S-FEM). Then, the differences between S-FEM and finite element method (FEM) in dealing with turbulent flows are compared.

Design/methodology/approach

The stabilization scheme, the streamline-upwind/Petrov-Galerkin stabilization is coupled with stabilized pressure gradient projection in the fractional step framework. The Reynolds-averaged Navier-Stokes equations with standard k-epsilon model are selected to solve turbulent flows based on S-FEM and FEM. Standard wall functions are applied to predict boundary layer profiles.

Findings

This paper explores a completely new application of S-FEM on turbulent flows. The adopted stabilization scheme presents a good performance on stabilizing the flows, especially for very high Reynolds numbers flows. An advantage of S-FEM is found in applying wall functions comparing with FEM. The differences between S-FEM and FEM have been investigated.

Research limitations/implications

The research in this work is limited to the two-dimensional incompressible turbulent flow.

Practical implications

The verification and validation of a new combination are conducted by several numerical examples. The new combination could be used to deal with more complicated turbulent flows.

Social implications

The applications of the new combination to study basic and complex turbulent flow are also presented, which demonstrates its potential to solve more turbulent flows in nature and engineering.

Originality/value

This work carries out a great extension of S-FEM in simulations of fluid dynamics. The new combination is verified to be very effective in handling turbulent flows. The performances of S-FEM and FEM on turbulent flows were analyzed by several numerical examples. Superior results were found compared with existing results and experiments. Meanwhile, S-FEM has an advantage of accuracy in predicting boundary layer profile.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 21 January 2019

Shashank Vadlamani and Arun C.O.

The purpose of this paper is to discuss about evaluating the integrals involving B-spline wavelet on the interval (BSWI), in wavelet finite element formulations, using Gauss…

Abstract

Purpose

The purpose of this paper is to discuss about evaluating the integrals involving B-spline wavelet on the interval (BSWI), in wavelet finite element formulations, using Gauss Quadrature.

Design/methodology/approach

In the proposed scheme, background cells are placed over each BSWI element and Gauss quadrature rule is defined for each of these cells. The nodal discretization used for BSWI WFEM element is independent to the selection of number of background cells used for the integration process. During the analysis, background cells of various lengths are used for evaluating the integrals for various combination of order and resolution of BSWI scaling functions. Numerical examples based on one-dimensional (1D) and two-dimensional (2D) plane elasto-statics are solved. Problems on beams based on Euler Bernoulli and Timoshenko beam theory under different boundary conditions are also examined. The condition number and sparseness of the formulated stiffness matrices are analyzed.

Findings

It is found that to form a well-conditioned stiffness matrix, the support domain of every wavelet scaling function should possess sufficient number of integration points. The results are analyzed and validated against the existing analytical solutions. Numerical examples demonstrate that the accuracy of displacements and stresses is dependent on the size of the background cell and number of Gauss points considered per background cell during the analysis.

Originality/value

The current paper gives the details on implementation of Gauss Quadrature scheme, using a background cell-based approach, for evaluating the integrals involved in BSWI-based wavelet finite element method, which is missing in the existing literature.

Article
Publication date: 4 July 2023

Jiayu Qin, Nengxiong Xu and Gang Mei

In this paper, the smoothed point interpolation method (SPIM) is used to model the slope deformation. However, the computational efficiency of SPIM is not satisfying when modeling…

Abstract

Purpose

In this paper, the smoothed point interpolation method (SPIM) is used to model the slope deformation. However, the computational efficiency of SPIM is not satisfying when modeling the large-scale nonlinear deformation problems of geological bodies.

Design/methodology/approach

In this paper, the SPIM is used to model the slope deformation. However, the computational efficiency of SPIM is not satisfying when modeling the large-scale nonlinear deformation problems of geological bodies.

Findings

A simple slope model with different mesh sizes is used to verify the performance of the efficient face-based SPIM. The first accelerating strategy greatly enhances the computational efficiency of solving the large-scale slope deformation. The second accelerating strategy effectively improves the convergence of nonlinear behavior that occurred in the slope deformation.

Originality/value

The designed efficient face-based SPIM can enhance the computational efficiency when analyzing large-scale nonlinear slope deformation problems, which can help to predict and prevent potential geological hazards.

Details

Engineering Computations, vol. 40 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 March 2003

Suman Das, Scott J. Hollister, Colleen Flanagan, Adebisi Adewunmi, Karlin Bark, Cindy Chen, Krishnan Ramaswamy, Daniel Rose and Erwin Widjaja

The aim of this research is to develop, demonstrate and characterize techniques for fabricating such scaffolds by combining solid freeform fabrication and computational design…

2965

Abstract

The aim of this research is to develop, demonstrate and characterize techniques for fabricating such scaffolds by combining solid freeform fabrication and computational design methods. When fully developed, such techniques are expected to enable the fabrication of tissue engineering scaffolds endowed with functionally graded material composition and porosity exhibiting sharp or smooth gradients. Results of bio‐compatibility and in vivo implantation are presented.

Details

Rapid Prototyping Journal, vol. 9 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 15 April 2020

Xiaoliang Qian, Jing Li, Jianwei Zhang, Wenhao Zhang, Weichao Yue, Qing-E Wu, Huanlong Zhang, Yuanyuan Wu and Wei Wang

An effective machine vision-based method for micro-crack detection of solar cell can economically improve the qualified rate of solar cells. However, how to extract features which…

Abstract

Purpose

An effective machine vision-based method for micro-crack detection of solar cell can economically improve the qualified rate of solar cells. However, how to extract features which have strong generalization and data representation ability at the same time is still an open problem for machine vision-based methods.

Design/methodology/approach

A micro-crack detection method based on adaptive deep features and visual saliency is proposed in this paper. The proposed method can adaptively extract deep features from the input image without any supervised training. Furthermore, considering the fact that micro-cracks can obviously attract visual attention when people look at the solar cell’s surface, the visual saliency is also introduced for the micro-crack detection.

Findings

Comprehensive evaluations are implemented on two existing data sets, where subjective experimental results show that most of the micro-cracks can be detected, and the objective experimental results show that the method proposed in this study has better performance in detecting precision.

Originality/value

First, an adaptive deep features extraction scheme without any supervised training is proposed for micro-crack detection. Second, the visual saliency is introduced for micro-crack detection.

Details

Sensor Review, vol. 40 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Open Access
Article
Publication date: 19 August 2021

Linh Truong-Hong, Roderik Lindenbergh and Thu Anh Nguyen

Terrestrial laser scanning (TLS) point clouds have been widely used in deformation measurement for structures. However, reliability and accuracy of resulting deformation…

2289

Abstract

Purpose

Terrestrial laser scanning (TLS) point clouds have been widely used in deformation measurement for structures. However, reliability and accuracy of resulting deformation estimation strongly depends on quality of each step of a workflow, which are not fully addressed. This study aims to give insight error of these steps, and results of the study would be guidelines for a practical community to either develop a new workflow or refine an existing one of deformation estimation based on TLS point clouds. Thus, the main contributions of the paper are investigating point cloud registration error affecting resulting deformation estimation, identifying an appropriate segmentation method used to extract data points of a deformed surface, investigating a methodology to determine an un-deformed or a reference surface for estimating deformation, and proposing a methodology to minimize the impact of outlier, noisy data and/or mixed pixels on deformation estimation.

Design/methodology/approach

In practice, the quality of data point clouds and of surface extraction strongly impacts on resulting deformation estimation based on laser scanning point clouds, which can cause an incorrect decision on the state of the structure if uncertainty is available. In an effort to have more comprehensive insight into those impacts, this study addresses four issues: data errors due to data registration from multiple scanning stations (Issue 1), methods used to extract point clouds of structure surfaces (Issue 2), selection of the reference surface Sref to measure deformation (Issue 3), and available outlier and/or mixed pixels (Issue 4). This investigation demonstrates through estimating deformation of the bridge abutment, building and an oil storage tank.

Findings

The study shows that both random sample consensus (RANSAC) and region growing–based methods [a cell-based/voxel-based region growing (CRG/VRG)] can be extracted data points of surfaces, but RANSAC is only applicable for a primary primitive surface (e.g. a plane in this study) subjected to a small deformation (case study 2 and 3) and cannot eliminate mixed pixels. On another hand, CRG and VRG impose a suitable method applied for deformed, free-form surfaces. In addition, in practice, a reference surface of a structure is mostly not available. The use of a fitting plane based on a point cloud of a current surface would cause unrealistic and inaccurate deformation because outlier data points and data points of damaged areas affect an accuracy of the fitting plane. This study would recommend the use of a reference surface determined based on a design concept/specification. A smoothing method with a spatial interval can be effectively minimize, negative impact of outlier, noisy data and/or mixed pixels on deformation estimation.

Research limitations/implications

Due to difficulty in logistics, an independent measurement cannot be established to assess the deformation accuracy based on TLS data point cloud in the case studies of this research. However, common laser scanners using the time-of-flight or phase-shift principle provide point clouds with accuracy in the order of 1–6 mm, while the point clouds of triangulation scanners have sub-millimetre accuracy.

Practical implications

This study aims to give insight error of these steps, and the results of the study would be guidelines for a practical community to either develop a new workflow or refine an existing one of deformation estimation based on TLS point clouds.

Social implications

The results of this study would provide guidelines for a practical community to either develop a new workflow or refine an existing one of deformation estimation based on TLS point clouds. A low-cost method can be applied for deformation analysis of the structure.

Originality/value

Although a large amount of the studies used laser scanning to measure structure deformation in the last two decades, the methods mainly applied were to measure change between two states (or epochs) of the structure surface and focused on quantifying deformation-based TLS point clouds. Those studies proved that a laser scanner could be an alternative unit to acquire spatial information for deformation monitoring. However, there are still challenges in establishing an appropriate procedure to collect a high quality of point clouds and develop methods to interpret the point clouds to obtain reliable and accurate deformation, when uncertainty, including data quality and reference information, is available. Therefore, this study demonstrates the impact of data quality in a term of point cloud registration error, selected methods for extracting point clouds of surfaces, identifying reference information, and available outlier, noisy data and/or mixed pixels on deformation estimation.

Details

International Journal of Building Pathology and Adaptation, vol. 40 no. 3
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 1 January 1996

K.J. Badcock, I.C. Glover and B.E. Richards

The approximate factorisation‐conjugate gradient squared (AF‐CGS) methodhas been successfully demonstrated for unsteady turbulent aerofoil flows andtransonic inviscid flows in two…

Abstract

The approximate factorisation‐conjugate gradient squared (AF‐CGS) method has been successfully demonstrated for unsteady turbulent aerofoil flows and transonic inviscid flows in two and three dimensions. The method consists of a conjugate gradient solution of the linear system at each step with the ADI approximate factorisation as a preconditioner. In the present paper the method is adapted to obtain rapid convergence for steady aerofoil flows when compared to the basic explicit method. Modifications to the original method are described, convergence criteria are examined and the method is demonstrated for transonic flow including AGARD test case 9 for the RAE2822 aerofoil.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 6 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 6 August 2019

Jingrong Li, Zhijia Xu, Qinghui Wang, Guanghua Hu and Yingjun Wang

The three-dimensional porous scaffold is an important concept in tissue engineering and helps to restore or regenerate a damaged tissue. Additive manufacturing (AM) technology…

Abstract

Purpose

The three-dimensional porous scaffold is an important concept in tissue engineering and helps to restore or regenerate a damaged tissue. Additive manufacturing (AM) technology makes the production of custom-designed scaffolds possible. However, modeling scaffolds with intricate architecture and customized pore size and spatial distribution presents a challenge. This paper aims to achieve coupling control of pore size and spatial distribution in bone scaffolds for AM.

Design/methodology/approach

First, the proposed method assumes that pore size and spatial distribution have already been transformed from the requirements of scaffolds as inputs. Second, the structural characteristics of scaffolds are explicitly correlated with an all-hexahedron meshing method for scaffold design so that the average pore size could be controlled. Third, the highly coupled internal mesh vertices are adjusted based on a random strategy so that the pore size and spatial distribution conform to their respective desired values. Fourth, after the adjustment, the unit pore cell based on a triply periodic minimal surface was mapped into the hexahedrons through a shape function, thereby ensuring the interconnectivity of the porous scaffold.

Findings

The case studies of three bone scaffolds demonstrate that the proposed approach is feasible and effective to simultaneously control pore size and spatial distribution in porous scaffolds.

Practical implications

The proposed method may make it more flexible to design scaffolds with controllable internal pore architecture for AM.

Originality/value

In the control approach, the highly coupled mesh vertices are adjusted through a random strategy, which can determine the moving direction and range of a vertex dynamically and biasedly, thus ensuring the feasibility and efficiency of the proposed method.

Article
Publication date: 1 April 2022

Can Ban, Na Na Pu, Yi Fei Zhang and Ma Wentao

This article aims to develop an accurate and efficient meshfree Galerkin method based on the strain smoothing technique for linear elastic continuous and fracture problems.

Abstract

Purpose

This article aims to develop an accurate and efficient meshfree Galerkin method based on the strain smoothing technique for linear elastic continuous and fracture problems.

Design/methodology/approach

This paper proposed a generalized linear smoothed meshfree method (LSMM), in which the compatible strain is reconstructed by the linear smoothed strains. Based on the idea of the weighted residual method and employing three linearly independent weight functions, the linear smoothed strains can be created easily in a smoothing domain. Using various types of basic functions, LSMM can solve the linear elastic continuous and fracture problems in a unified way.

Findings

On the one hand, the LSMM inherits the properties of high efficiency and stability from the stabilized conforming nodal integration (SCNI). On the other hand, the LSMM is more accurate than the SCNI, because it can produce continuous strains instead of the piece-wise strains obtained by SCNI. Those excellent performances ensure that the LSMM has the capability to precisely track the crack propagation problems. Several numerical examples are investigated to verify the accurate, convergence rate and robustness of the present LSMM.

Originality/value

This study provides an accurate and efficient meshfree method for simulating crack growth.

Details

Engineering Computations, vol. 39 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of 55