Search results

1 – 2 of 2
Article
Publication date: 18 June 2020

Kazeem Babawale Kasali, Yusuf Olatunji Tijani, Matthew Oluwafemi Lawal and Yussuff Titilope Lawal

In this paper, we studied the steady flow of a radiative magnetohydrodynamics viscoelastic fluid over an exponentially stretching sheet. This present work incorporated the effects…

Abstract

Purpose

In this paper, we studied the steady flow of a radiative magnetohydrodynamics viscoelastic fluid over an exponentially stretching sheet. This present work incorporated the effects of Soret, Dufour, thermal radiation and chemical reaction.

Design/methodology/approach

An appropriate semi-analytical technique called homotopy analysis method (HAM) was used to solve the resulting nonlinear dimensionless boundary value problem, and the method was validated numerically using a finite difference scheme implemented on Maple software.

Findings

It was observed that apart from excellence agreement with the results in literature, the results obtained gave further insights into the behaviour of the system.

Originality/value

The purpose of this research is to investigate heat and mass transfer profiles of a MHD viscoelastic fluid flow over an exponentially stretching sheet in the influence of chemical reaction, thermal radiation and cross-diffusion which are hitherto neglected in previous studies.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 6
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 29 May 2023

Jawad Raza, Mohsin Raza, Tahir Mustaq and Muhammad Imran Qureshi

The purpose of this paper is to study the thermal behavior of radial porous fin surrounded by water-base copper nanoparticles under the influence of radiation.

Abstract

Purpose

The purpose of this paper is to study the thermal behavior of radial porous fin surrounded by water-base copper nanoparticles under the influence of radiation.

Design/methodology/approach

In order to optimize the response variable, the authors perform sensitivity analysis with the aid of response surface methodology (RSM). Moreover, this study enlightens the applications of artificial neural networks (ANN) for predicting the temperature gradient. The governing modeled equations are firstly non-dimensionalized and then solved with the aid of Runge–Kutta fourth order together with the shooting method in order to guess the initial conditions.

Findings

Numerical results are analyzed and presented in the form of tables and graphs. This study reveals that the temperature of the fin is decreasing as the wet porous parameter increases (m2) and the temperature for 10% concentration of nanoparticles are higher than 5 and 1%. Physical parameters involved in the study are analyzed and processed through RSM. It is come to know that sensitivity of temperature gradient to radiative parameter (Nr) and convective parameter (Nc) is positive and negative to dimensionless ambient temperature (θa). Furthermore, after ANN training it can be argued that the established model can efficiently be used to predict the temperature gradient over a radial porous fin for the copper-water nanofluid flow.

Originality/value

To the best of our knowledge, only a few attempts have been made to analyze the thermal behavior of radial porous fin surrounded by copper-based nanofluid under the influence of radiation and convection.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

1 – 2 of 2