Search results

1 – 5 of 5
Article
Publication date: 2 February 2024

Jagadesh Vardagala, Sreenadh Sreedharamalle, Ajithkumar Moorthi, Sucharitha Gorintla and Lakshminarayana Pallavarapu

Ohmic heating generates temperature with the help of electrical current and resists the flow of electricity. Also, it generates heat rapidly and uniformly in the liquid matrix…

Abstract

Purpose

Ohmic heating generates temperature with the help of electrical current and resists the flow of electricity. Also, it generates heat rapidly and uniformly in the liquid matrix. Electrically conducting biofluid flows with Ohmic heating have many biomedical and industrial applications. The purpose of this study is to provide the significance of the effects of Ohmic heating and viscous dissipation on electrically conducting Casson nanofluid flow driven by peristaltic pumping through a vertical porous channel.

Design/methodology/approach

In this analysis, the non-Newtonian properties of fluid will be characterized by the Casson fluid model. The long wavelength approach reduces the complexity of the governing system of coupled partial differential equations with non-linear components. Using a regular perturbation approach, the solutions for the flow quantities are established. The fascinating and essential characteristics of flow parameters such as the thermal Grashof number, nanoparticle Grashof number, magnetic parameter, Brinkmann number, permeability parameter, Reynolds number, Casson fluid parameter, thermophoresis parameter and Brownian movement parameter on the convective peristaltic pumping are presented and thoroughly addressed. Furthermore, the phenomenon of trapping is illustrated visually.

Findings

The findings indicate that intensifying the permeability and Casson fluid parameters boosts the temperature distribution. It is observed that the velocity profile is elevated by enhancing the thermal Grashof number and perturbation parameter, whereas it reduces as a function of the magnetic parameter and Reynolds number. Moreover, trapped bolus size upsurges for greater values of nanoparticle Grashof number and magnetic parameter.

Originality/value

There are some interesting studies in the literature to explain the nature of the peristaltic flow of non-Newtonian nanofluids under various assumptions. It is observed that there is no study in the literature as investigated in this paper.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 4 April 2023

Chinedu Chinakwe, Adekunle Adelaja, Michael Akinseloyin and Olabode Thomas Olakoyejo

Inclination angle has been reported to have an enhancing effect on the thermal-hydraulic characteristics and entropy of some thermal systems. Therefore, this paper aims to…

Abstract

Purpose

Inclination angle has been reported to have an enhancing effect on the thermal-hydraulic characteristics and entropy of some thermal systems. Therefore, this paper aims to numerically investigate the effects of inclination angle, volume concentration and Reynolds number on the thermal and hydraulic characteristics and entropy generation rates of water-based Al2O3 nanofluids through a smooth circular aluminum pipe in a turbulent flow.

Design/methodology/approach

A constant heat flux of 2,000 Watts is applied to the circular surface of the tube. Reynolds number is varied between 4,000 and 20,000 for different volume concentrations of alumina nanoparticles of 0.5%, 1.0% and 2.0% for tube inclination angles of ±90o, ±60o, ±45o, ±30o and 0o, respectively. The simulation is performed in an ANSYS Fluent environment using the realizable kinetic energy–epsilon turbulent model.

Findings

Results show that +45o tube orientation possesses the largest thermal deviations of 0.006% for 0.5% and 1.0% vol. concentrations for Reynolds numbers 4,000 and 12,000. −45o gives a maximum pressure deviation of −0.06% for the same condition. The heat transfer coefficient and pressure drop give maximum deviations of −0.35% and −0.39%, respectively, for 2.0% vol. concentration for Reynolds number of 20,000 and angle ±90o. A 95%–99.8% and 95%–98% increase in the heat transfer and total entropy generation rates, respectively, is observed for 2.0% volume concentration as tube orientation changes from the horizontal position upward or downward.

Originality/value

Research investigating the effect of inclination angle on thermal-hydraulic performance and entropy generation rates in-tube turbulent flow of nanofluid is very scarce in the literature.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 16 April 2024

Latifah Falah Alharbi, Umair Khan, Aurang Zaib and Anuar Ishak

A novel type of heat transfer fluid known as hybrid nanofluids is used to improve the efficiency of heat exchangers. It is observed from literature evidence that hybrid nanofluids…

Abstract

Purpose

A novel type of heat transfer fluid known as hybrid nanofluids is used to improve the efficiency of heat exchangers. It is observed from literature evidence that hybrid nanofluids outperform single nanofluids in terms of thermal performance. This study aims to address the stagnation point flow induced by Williamson hybrid nanofluids across a vertical plate. This fluid is drenched under the influence of mixed convection in a Darcy–Forchheimer porous medium with heat source/sink and entropy generation.

Design/methodology/approach

By applying the proper similarity transformation, the partial differential equations that represent the leading model of the flow problem are reduced to ordinary differential equations. For the boundary value problem of the fourth-order code (bvp4c), a built-in MATLAB finite difference code is used to tackle the flow problem and carry out the dual numerical solutions.

Findings

The shear stress decreases, but the rate of heat transfer increases because of their greater influence on the permeability parameter and Weissenberg number for both solutions. The ability of hybrid nanofluids to strengthen heat transfer with the incorporation of a porous medium is demonstrated in this study.

Practical implications

The findings may be highly beneficial in raising the energy efficiency of thermal systems.

Originality/value

The originality of the research lies in the investigation of the Darcy–Forchheimer stagnation point flow of a Williamson hybrid nanofluid across a vertical plate, considering buoyancy forces, which introduces another layer of complexity to the flow problem. This aspect has not been extensively studied before. The results are verified and offer a very favorable balance with the acknowledged papers.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 22 February 2024

Yumeng Feng, Weisong Mu, Yue Li, Tianqi Liu and Jianying Feng

For a better understanding of the preferences and differences of young consumers in emerging wine markets, this study aims to propose a clustering method to segment the super-new…

Abstract

Purpose

For a better understanding of the preferences and differences of young consumers in emerging wine markets, this study aims to propose a clustering method to segment the super-new generation wine consumers based on their sensitivity to wine brand, origin and price and then conduct user profiles for segmented consumer groups from the perspectives of demographic attributes, eating habits and wine sensory attribute preferences.

Design/methodology/approach

We first proposed a consumer clustering perspective based on their sensitivity to wine brand, origin and price and then conducted an adaptive density peak and label propagation layer-by-layer (ADPLP) clustering algorithm to segment consumers, which improved the issues of wrong centers' selection and inaccurate classification of remaining sample points for traditional DPC (DPeak clustering algorithm). Then, we built a consumer profile system from the perspectives of demographic attributes, eating habits and wine sensory attribute preferences for segmented consumer groups.

Findings

In this study, 10 typical public datasets and 6 basic test algorithms are used to evaluate the proposed method, and the results showed that the ADPLP algorithm was optimal or suboptimal on 10 datasets with accuracy above 0.78. The average improvement in accuracy over the base DPC algorithm is 0.184. As an outcome of the wine consumer profiles, sensitive consumers prefer wines with medium prices of 100–400 CNY and more personalized brands and origins, while casual consumers are fond of popular brands, popular origins and low prices within 50 CNY. The wine sensory attributes preferred by super-new generation consumers are red, semi-dry, semi-sweet, still, fresh tasting, fruity, floral and low acid.

Practical implications

Young Chinese consumers are the main driver of wine consumption in the future. This paper provides a tool for decision-makers and marketers to identify the preferences of young consumers quickly which is meaningful and helpful for wine marketing.

Originality/value

In this study, the ADPLP algorithm was introduced for the first time. Subsequently, the user profile label system was constructed for segmented consumers to highlight their characteristics and demand partiality from three aspects: demographic characteristics, consumers' eating habits and consumers' preferences for wine attributes. Moreover, the ADPLP algorithm can be considered for user profiles on other alcoholic products.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 7 November 2023

Ishfaq Ahmad, Rida Akbar and Muhammad Ali Javed

The concept of online shopping has been in vogue for the past two decades and is on the rise. Even developing countries like Pakistan are using electronic platforms to buy and…

Abstract

Purpose

The concept of online shopping has been in vogue for the past two decades and is on the rise. Even developing countries like Pakistan are using electronic platforms to buy and sell goods and services, and the trend has been increasing ever since the COVID-19 pandemic. Drawing on the expectancy-disconfirmation theory, this study aims to test the e-service quality (E-SQ) and e-customer satisfaction (ECS) linkage with the mediating roles of functional values (FVs) and hedonic values (HVs).

Design/methodology/approach

The data have been collected from 298 customers of AliExpress and Daraz e-commerce platforms and analyzed using covariance-based structural equation modeling (CB-SEM).

Findings

The results of the study showed a significant positive relationship between E-SQ and ECS and indirect linkage through FVs and HVs have also been established.

Practical implications

E-commerce platforms, particularly in Pakistan, should place a strong emphasis on FVs by providing accurate product details, user-friendly navigation, transparent pricing and streamlined transactions. Customers' trust and confidence will increase if they have a smooth and effective online purchasing experience. Customer satisfaction may be influenced by regular platform functionality and usability changes.

Originality/value

The use of functional and HVs is considered to be a novel factor in testing the relationship between E-SQ and ECS.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

1 – 5 of 5