Search results

1 – 6 of 6
Article
Publication date: 10 August 2023

Clément Génin, Marc Jeannin, Anne-Marie Grolleau and Philippe Refait

The purpose of this study is to investigate cathodic protection (CP) efficiency in the tidal zone and its associated processes.

Abstract

Purpose

The purpose of this study is to investigate cathodic protection (CP) efficiency in the tidal zone and its associated processes.

Design/methodology/approach

Specific features of CP in the tidal zone, that is, persistence of a thin seawater film and insufficient cathodic potential due to ohmic drop, were addressed. In this preliminary study, carbon steel electrodes were polarized at two cathodic potentials (correct or insufficient protection) while immersed in 1 mm or 5 mm thick natural seawater layers. After CP interruption, the protective ability of the layers covering the steel electrodes was studied using various electrochemical methods, including electrochemical impedance spectroscopy. The layers were characterized by XRD.

Findings

The protective ability of calcareous deposits was increased in thin seawater films. Insufficient CP could promote protective aragonite/corrosion products layer.

Originality/value

The combined effects of thin seawater film and applied potential were never addressed, and the conclusions drawn from this preliminary study give new insight on the efficiency of CP in the tidal zone.

Details

Anti-Corrosion Methods and Materials, vol. 70 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 15 August 2023

Yongtao Zhao, Weili Li, Xiaoyang Xuan, Jianbang Gao, Jue Wang, Liang Dong, Dawei Zang, Mingjian Wang and Xiankang Zhong

This study aims to evaluate the protection performance of zinc as sacrificial anode for ABS A steel in the presence of H2S under different temperatures, pH and salinities.

Abstract

Purpose

This study aims to evaluate the protection performance of zinc as sacrificial anode for ABS A steel in the presence of H2S under different temperatures, pH and salinities.

Design/methodology/approach

In this paper, weight loss measurements and electrochemical measurements are used to evaluate the corrosion degree of zinc and ABS A steel.

Findings

Under the conditions involved in this work, it is shown that zinc is a nice sacrificial anode with the reason of its stable potential and excellent anode current efficiency according to the relevant standard. And it is also found that the hydrogen evolution does not occur on ABS A steel specimens. The potential difference between cathode and anode is suitable; thus, it can be concluded that each steel is well protected.

Originality/value

To the best of the authors’ knowledge, no other study has analyzed the protection mechanism and effect of zinc as sacrificial anode in H2S-containing environments under high temperature at present.

Details

Anti-Corrosion Methods and Materials, vol. 70 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 6 February 2024

Shuangjiu Deng, Chang Li, Xing Han, Menghui Yu and Han Sun

The restoration and strengthening of QT600 is an industry bottleneck challenge. The Co-12 cladding layer has great wear and corrosion resistance. The purpose of this paper is to…

Abstract

Purpose

The restoration and strengthening of QT600 is an industry bottleneck challenge. The Co-12 cladding layer has great wear and corrosion resistance. The purpose of this paper is to quantitatively reveal the transient evolution law of the corrosion process of Co-12 cladding layer on QT600 surface.

Design/methodology/approach

In this paper, a three-dimensional numerical model of the corrosion process of Co-12 cladding layer by QT600 laser cladding is established. The interaction between pitting pits and corrosion medium is considered to reveal the transient evolution of ion concentration, electrode potential, pH and corrosion rate at different locations.

Findings

The calculation shows that the ion concentration in pitting pit changes Cl>Co2+>Na+, pH value decreases from top to bottom and corrosion rate at bottom is greater than that at top. The electrochemical corrosion test of Co-12 cladding layer was carried out. It is shown that the current density of QT600 increases by an order of magnitude compared to the Co-12 cladding layer, and the corrosion rate is 4.862 times higher than that of the cladding layer.

Originality/value

The results show that Co-12 cladding layer has great corrosion resistance, which provides an effective way for QT600 protection.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 24 August 2023

Haijing Sun, Jianing Cui, He Wang, Shuai Yang, Souavang Xaikoua, Yong Tan, Xin Zhou, Baojie Wang and Jie Sun

The purpose of this paper is to study the effect of temperature on Zn–Ni alloys in ChCl–Urea.

Abstract

Purpose

The purpose of this paper is to study the effect of temperature on Zn–Ni alloys in ChCl–Urea.

Design/methodology/approach

Based on cyclic voltammetry experiments, the deposition behavior and kinetics of the Zn–Ni alloy are studied. The nucleation process of the Zn–Ni alloy is studied in detail via chronoamperometry experiments. The effects of the deposition temperature on the microstructure, Ni content and phase composition of Zn–Ni alloy coatings are investigated via scanning electron microscopy and X-ray diffraction (XRD) combined with classical thermodynamics.

Findings

The results show that with increasing temperature, the reduction peak shifts toward a more positive electric potential, which is beneficial for the co-electric deposition process, and the diffusion coefficient is estimated. With increasing temperature, the nucleation process of the Zn–Ni alloy becomes a three-dimensional instantaneous nucleation, the typical kinetic parameters are determined using the standard 3D growth proliferation control model and the Gibbs free energy is estimated. The Zn–Ni alloy coatings are prepared via normal co-deposition. With increasing temperature, the degree of crystallinity increases, the coating gradually becomes uniform and compact and the XRD peak intensity increases.

Originality/value

The nucleation process of the Zn–Ni alloy at different temperatures is analyzed. The diffusion coefficient D and Gibbs free energy are calculated. The contribution of the three processes at different temperatures is analyzed. The effect of temperature on the morphology of the Zn–Ni alloy coatings is studied.

Details

Anti-Corrosion Methods and Materials, vol. 70 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 31 July 2023

Badegül Tunçay, Harun Çuğ, Tansel Tunçay, Dursun Özyürek and Katarzyna Cesarz-Andraczke

This study aims to investigate NiTi alloys’ characterization and corrosion behaviour produced by two different powder metallurgy (PM) methods.

Abstract

Purpose

This study aims to investigate NiTi alloys’ characterization and corrosion behaviour produced by two different powder metallurgy (PM) methods.

Design/methodology/approach

It was pre-formed under a protective atmosphere at 900 °C under a force of 45 MPa and sintered for 1 h under 10–6 Mbar in an atmosphere-controlled heat treatment furnace at 1,100 °C. The relationship between microstructural properties, SEM, XRD, density, microhardness and corrosion behaviour of pre-alloyed NiTi alloys produced by two different methods with the production method was investigated.

Findings

As a result of the studies, TiO, NiTi, NiTi2 and Ni3Ti intermetallics were determined in XRD examinations. The best surface roughness was observed in the mechanically milled (MM’ed) pre-alloyed NiTi alloy compared to the pre-alloyed NiTi alloy mixed with turbula. The corrosion tests performed in 3.5% NaCl solution determined that the MM’ed pre-alloyed NiTi alloy had better corrosion resistance than the pre-alloyed NiTi alloy mixed with turbula. Pitting corrosion was visualized in the SEM images taken from the corrosion surfaces.

Originality/value

Two different PM methods produced pre-alloyed NiTi powders, and the effects of these methods on the mechanical and corrosion resistance of NiTi alloys were systematically investigated for the first time.

Details

Anti-Corrosion Methods and Materials, vol. 70 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 26 December 2023

Raghad Ahmed Alaloosi, Onur Çomakli, Mustafa Yazici and Ziad A. Taha

This paper aims to investigate the influence of scan speed on the corrosion and tribocorrosion features of the CoCrMoW samples fabricated via the selective laser melting (SLM…

Abstract

Purpose

This paper aims to investigate the influence of scan speed on the corrosion and tribocorrosion features of the CoCrMoW samples fabricated via the selective laser melting (SLM) process.

Design/methodology/approach

CoCrMoW samples were produced by SLM at different scan speeds. Produced samples were made via structural surveys (X-ray diffraction examinations and scanning electron microscopic analyses), hardness measurements and electrochemical and tribocorrosion experiments.

Findings

Outcomes displayed that the corrosion and tribocorrosion properties of CoCrMoW alloy were significantly influenced by scanning speeds. Also, these properties of the alloy increased with increasing scanning speeds. CoCrMoW samples produced at a laser scan speed of 1,000 mm/s showed the best resistance to corrosion and tribocorrosion. This could be related to the high hardness and low grain structure of the fabricated samples.

Originality/value

This paper may be a practical reference and offers insight into the effect of scanning speeds on the increase of hardness, tribological and corrosion performance of CoCrMoW alloys. This study can help in the further advancement of cobalt-chromium alloy in situ produced by SLM for both electrochemical and tribocorrosion behavior for biomedical applications.

Details

Rapid Prototyping Journal, vol. 30 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 6 of 6