Search results

1 – 10 of 17
Article
Publication date: 3 May 2023

Xiao Wang, Xuan Liang, Bo Wang, Chang-qing Guo, Shan-gui Zhang, Kai Yang, Shi-ya Shao, Yan Sun, Zheng Guo, Xue-yan Yu, Donghai Zhang, Tai-jiang Gui, Wei Lu, Ming-liang Sun and Rui Ding

The purpose of this study is to evaluate the effect of graphene, basalt flakes and their synergy on the corrosion resistance of zinc-rich coatings. As the important heavy-duty…

Abstract

Purpose

The purpose of this study is to evaluate the effect of graphene, basalt flakes and their synergy on the corrosion resistance of zinc-rich coatings. As the important heavy-duty anticorrosion coatings, zinc-rich coatings provided cathodic protection for the substrate. However, to ensure cathodic protection, a large number of zinc powder made the penetration resistance known as the weakness of zinc-rich coatings. Therefore, graphene and basalt flakes were introduced into zinc-rich coatings to coordinate its cathodic protection and shielding performance.

Design/methodology/approach

Three kinds of coatings were prepared; they were graphene modified zinc-rich coatings, basalt flakes modified zinc-rich coatings and graphene-basalt flakes modified zinc-rich coatings. The anticorrosion behavior of painted steel was studied by using the electrochemical impedance spectroscopy (EIS) technique in chloride solutions. The equivalent circuit methods were used for EIS analysis to obtain the electrode process structure of the coated steel system. Simultaneously, the corrosion resistance of the three coatings was evaluated by water resistance test, salt water resistance test and salt spray test.

Findings

The study found that the addition of a small amount of graphene and basalt flakes significantly improved the anticorrosion performance of coatings by enhancing their shielding ability against corrosive media and increasing the resistance of the electrochemical reaction. The modified coatings exhibited higher water resistance, salt water resistance and salt spray resistance. The graphene-basalt flakes modified zinc-rich coatings demonstrated the best anticorrosion effect. The presence of basalt scales and graphene oxide in the coatings significantly reduced the water content and slowed down the water penetration rate in the coatings, thus prolonging the coating life and improving anticorrosion effects. The modification of zinc-rich coatings with graphene and basalt flakes improved the utilization rate of zinc powder and the shielding property of coatings against corrosive media, thus strengthening the protective effect on steel structures and prolonging the service life of anticorrosion coatings.

Originality/value

The significance of developing graphene-basalt flakes modified zinc-rich coatings lies in their potential to offer superior performance in corrosive environments, leading to prolonged service life of metallic structures, reduced maintenance costs and a safer working environment. Furthermore, such coatings can be used in various industrial applications, including bridges, pipelines and offshore structures, among others.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 21 February 2024

Nehal Elshaboury, Tarek Zayed and Eslam Mohammed Abdelkader

Water pipes degrade over time for a variety of pipe-related, soil-related, operational, and environmental factors. Hence, municipalities are necessitated to implement effective…

Abstract

Purpose

Water pipes degrade over time for a variety of pipe-related, soil-related, operational, and environmental factors. Hence, municipalities are necessitated to implement effective maintenance and rehabilitation strategies for water pipes based on reliable deterioration models and cost-effective inspection programs. In the light of foregoing, the paramount objective of this research study is to develop condition assessment and deterioration prediction models for saltwater pipes in Hong Kong.

Design/methodology/approach

As a perquisite to the development of condition assessment models, spherical fuzzy analytic hierarchy process (SFAHP) is harnessed to analyze the relative importance weights of deterioration factors. Afterward, the relative importance weights of deterioration factors coupled with their effective values are leveraged using the measurement of alternatives and ranking according to the compromise solution (MARCOS) algorithm to analyze the performance condition of water pipes. A condition rating system is then designed counting on the generalized entropy-based probabilistic fuzzy C means (GEPFCM) algorithm. A set of fourth order multiple regression functions are constructed to capture the degradation trends in condition of pipelines overtime covering their disparate characteristics.

Findings

Analytical results demonstrated that the top five influential deterioration factors comprise age, material, traffic, soil corrosivity and material. In addition, it was derived that developed deterioration models accomplished correlation coefficient, mean absolute error and root mean squared error of 0.8, 1.33 and 1.39, respectively.

Originality/value

It can be argued that generated deterioration models can assist municipalities in formulating accurate and cost-effective maintenance, repair and rehabilitation programs.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 6 February 2024

Shuangjiu Deng, Chang Li, Xing Han, Menghui Yu and Han Sun

The restoration and strengthening of QT600 is an industry bottleneck challenge. The Co-12 cladding layer has great wear and corrosion resistance. The purpose of this paper is to…

Abstract

Purpose

The restoration and strengthening of QT600 is an industry bottleneck challenge. The Co-12 cladding layer has great wear and corrosion resistance. The purpose of this paper is to quantitatively reveal the transient evolution law of the corrosion process of Co-12 cladding layer on QT600 surface.

Design/methodology/approach

In this paper, a three-dimensional numerical model of the corrosion process of Co-12 cladding layer by QT600 laser cladding is established. The interaction between pitting pits and corrosion medium is considered to reveal the transient evolution of ion concentration, electrode potential, pH and corrosion rate at different locations.

Findings

The calculation shows that the ion concentration in pitting pit changes Cl>Co2+>Na+, pH value decreases from top to bottom and corrosion rate at bottom is greater than that at top. The electrochemical corrosion test of Co-12 cladding layer was carried out. It is shown that the current density of QT600 increases by an order of magnitude compared to the Co-12 cladding layer, and the corrosion rate is 4.862 times higher than that of the cladding layer.

Originality/value

The results show that Co-12 cladding layer has great corrosion resistance, which provides an effective way for QT600 protection.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 18 December 2023

Yingying Li, Lanlan Liu, Jun Wang, Song Xu, Hui Su, Yi Xie and Tangqing Wu

The purpose of this paper is to study the corrosion behavior of Q235 steel in saturated acidic red and yellow soils.

Abstract

Purpose

The purpose of this paper is to study the corrosion behavior of Q235 steel in saturated acidic red and yellow soils.

Design/methodology/approach

The corrosion behavior of Q235 steel in saturated red and yellow soils was compared by weight-loss, SEM/EDS, 3D ultra-depth microscopy and electrochemical measurements.

Findings

Rp of the steel gradually increases and icorr gradually decreases in both the red and yellow soils with time. The Rp of the steel in the red soil is lower, but its icorr is higher than that in the yellow soil. The uniform corrosion rate, diameter and density of the corrosion pit on the steel surface in the red soil are greater than those in the yellow soil. Lower pH, higher contents of corrosive anions and high-valence Fe oxides in the red soil are responsible for its higher corrosion rates and local corrosion susceptibility.

Originality/value

This paper investigates the difference in corrosion behavior of carbon steel in saturated acidic red and yellow soils, which can help to understand the mechanism of soil corrosion.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 16 October 2023

Monapriya Naidu Kerinasamy Naidu, Iling Aema Wonnie Ma, Sachin Sharma Ashok Kumar, Vengadaesvaran Balakrishnan, Ramesh Subramaniam and Ramesh Kasi

The purpose of this study is to develop a protective coating system on mild steel panel incorporating epoxidized natural rubber with acrylic polyol resin.

Abstract

Purpose

The purpose of this study is to develop a protective coating system on mild steel panel incorporating epoxidized natural rubber with acrylic polyol resin.

Design/methodology/approach

In this work, a novel attempt is made to develop binder coatings using epoxidized natural rubber-based material and an organic resin (acrylic resin) for corrosion protection on metal substrate. Seven different samples of multifunctional coatings are developed by varying the compositions of epoxidized natural rubber (ENR) and acrylic resin. The properties of the developed coatings have been characterized using analytical methods such as Fourier transform infrared spectroscopy (FTIR) and electrochemical impedance spectroscopy (EIS). EIS has been carried out for 30 days to evaluate the corrosion resistance after immersing into 3.5 wt.% of sodium chloride. Cross hatch cut tester (CHT) has been used to study the adhesive properties. UV–Visible Spectroscopy (UV–Vis) was also used to assess changes in the coating-film transparency of the natural rubber-based coating systems in this study.

Findings

The developed coatings have formed uniform layer on the substrate. CHT results show excellent adhesion of the coatings. Higher concentrations of ENR have higher transparency level, which reduces when the acrylic concentration increases. FTIR analysis confirms the crosslinking that occurred between the components of the coatings. Based on the impedance data from EIS, the incorporation of natural rubber can be an additive for the corrosion protection, which has the coating resistance values well above 108Ω even after 30 days of immersion.

Practical implications

The blending method provides a simple and practical solution to improve the strength and adhesion properties of acrylic polyol resin with epoxidized natural rubber. There is still improvement needed for long-term applications.

Originality/value

The work has been conducted in our laboratory. The combination of natural rubber-based materials and organic resins is a new approach in coating research.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 9 February 2024

Ayad Alameeri, Gholamreza Abdollahzadeh and Seyedkomeil Hashemiheidari

This study aims to determine the effect of replacing a portion of the cement in the concrete mixture with silica fume (SF) on the corrosion resistance of reinforcing bars, the…

Abstract

Purpose

This study aims to determine the effect of replacing a portion of the cement in the concrete mixture with silica fume (SF) on the corrosion resistance of reinforcing bars, the compressive strength of concrete and the tensile strength of hook bars in both corroded and non-corroded external joints of structures. The external beam-column connection was studied because of its critical role in maintaining structural continuity in all three directions and providing resistance to rotation.

Design/methodology/approach

In external concrete joints, the bars at the end of the beams are often bent at 90° to form hooks that embed in columns. Owing to the importance of embedding distance and the need to understand its susceptibility to corrosion damage from chloride attack, a series of experiments were conducted on 12 specimens that accurately simulate real-site conditions in terms of dimensions, reinforcement and hook bars. SF was replaced with 10% and 15% of the weight of cement in the concrete mixture. To simulate corrosion, the specimens were subjected to accelerated corrosion in the laboratory by applying a low continuous current of 0.35 mA for 58 days.

Findings

The results revealed the effect of SF in improving the compressive strength of concrete, the pullout resistance of the hook bars and the corrosion resistance. In addition, it showed an apparent effect of the corrosion of reinforcing bars in reducing the bonding strength of hook bars with concrete and the effect of SF in improving this strength.

Originality/value

It was noted that the improvement of the results, achieved by replacing 10% of the weight of cement with SF, was significantly close to the results obtained by replacing 15% of the SF. It is recommended that an SF ratio of 10% be adopted to achieve the greatest economic savings.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 22 February 2024

Thien Vuong Nguyen, Vy Do Truc, Tuan Anh Nguyen and Dai Lam Tran

This study aims to explore the synergistic effect of oxide nanoparticles (ZnO, Fe2O3, SiO2) and cerium nitrate inhibitor on anti-corrosion performance of epoxy coating. First…

33

Abstract

Purpose

This study aims to explore the synergistic effect of oxide nanoparticles (ZnO, Fe2O3, SiO2) and cerium nitrate inhibitor on anti-corrosion performance of epoxy coating. First, cerium nitrate inhibitors are absorbed on the surface of various oxide nanoparticles. Thereafter, epoxy nanocomposite coatings have been fabricated on carbon steel substrate using these oxide@Ce nanoparticles as both nano-fillers and nano-inhibitors.

Design/methodology/approach

To evaluate the impact of oxides@Ce nanoparticles on mechanical properties of epoxy coating, the abrasion resistance and impact resistance of epoxy coatings have been examined. To study the impact of oxides@Ce nanoparticles on anti-corrosion performance of epoxy coating for steel, the electrochemical impedance spectroscopy has been carried out in 3% NaCl solution.

Findings

ZnO@Ce3+ and SiO2@Ce3+ nanoparticles provide more enhancement in the epoxy pore network than modification of the epoxy/steel interface. Whereas, Fe2O3@Ce3+ nanoparticles have more to do with modification of the epoxy/steel interface than to change the epoxy pore network.

Originality/value

Incorporation of both oxide nanoparticles and inorganic inhibitor into the epoxy resin is a promising approach for enhancing the anti-corrosion performance of carbon steel.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 21 February 2024

Shuliu Wang, Qianqian Liu, Jin Wang, Nana Chen, JunHang Chen, Jialiang Song, Xin Zhang and Kui Xiao

This study aims to investigate the role of aluminium (Al) in marine environment and the corrosion mechanism of galvalume coatings by conducting accelerated experiments and data…

Abstract

Purpose

This study aims to investigate the role of aluminium (Al) in marine environment and the corrosion mechanism of galvalume coatings by conducting accelerated experiments and data analysis.

Design/methodology/approach

Samples were subjected to accelerated corrosion for 136 days via salt spray tests to simulate the natural conditions of marine environment and consequently accelerate the experiments. Subsequently, the samples were examined using various test methods, such as EDS, scanning electron microscopy (SEM), X-ray diffraction (XRD) and electrochemical impedance spectroscopy (EIS), and the obtained data were analysed.

Findings

Galvalume coatings comprised interdigitated zinc (Zn)-rich and dendritic Al-rich phases. Corrosion was observed to begin with a Zn-rich phase. The primary components of the corrosion product film were Al2O3 and Zn5(OH)8Cl2·H2O. It was confirmed that the role of Al was to form a dense protective film, thereby successfully blocking the entry of corrosive media and protecting the iron substrate.

Originality/value

This study provides a clearer understanding of the corrosion mechanism and kinetics of galvalume coatings in a simulated marine environment. In addition, the role of Al, which is rarely mentioned in the literature, was investigated.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 29 August 2023

Chigoziri N. Njoku, Temple Uzoma Maduoma, Wilfred Emori, Rita Emmanuel Odey, Beshel M. Unimke, Emmanuel Yakubu, Cyril C. Anorondu, Daniel I. Udunwa, Onyinyechi C. Njoku and Kechinyere B. Oyoh

Corrosion is a major concern for many industries that use metals as structural or functional materials, and the use of corrosion inhibitors is a widely accepted strategy to…

Abstract

Purpose

Corrosion is a major concern for many industries that use metals as structural or functional materials, and the use of corrosion inhibitors is a widely accepted strategy to protect metals from deterioration in corrosive environments. Moreover, the toxic nature, non-biodegradability and price of most conventional corrosion inhibitors have encouraged the application of greener and more sustainable options, with natural and synthetic drugs being major actors. Hence, this paper aims to stress the capability of natural and synthetic drugs as manageable and sustainable, environmentally friendly solutions to the problem of metal corrosion.

Design/methodology/approach

In this review, the recent developments in the use of natural and synthetic drugs as corrosion inhibitors are explored in detail to highlight the key advancements and drawbacks towards the advantageous utilization of drugs as corrosion inhibitors.

Findings

Corrosion is a critical issue in numerous modern applications, and conventional strategies of corrosion inhibition include the use of toxic and environmentally harmful chemicals. As greener alternatives, natural compounds like plant extracts, essential oils and biopolymers, as well as synthetic drugs, are highlighted in this review. In addition, the advantages and disadvantages of these compounds, as well as their effectiveness in preventing corrosion, are discussed in the review.

Originality/value

This survey stresses on the most recent abilities of natural and synthetic drugs as viable and sustainable, environmentally friendly solutions to the problem of metal corrosion, thus expanding the general knowledge of green corrosion inhibitors.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 23 June 2023

Wilfred Emori, Paul C. Okonkwo, Hitler Louis, Ling Liu, Ernest C. Agwamba, Tomsmith Unimuke, Peter Okafor, Atowon D. Atowon, Anthony Ikechukwu Obike and ChunRu Cheng

Owing to the toxicity, biodegradability, and cost of most corrosion inhibitors, research attention is now focused on the development of environmentally benign, biodegradable…

Abstract

Purpose

Owing to the toxicity, biodegradability, and cost of most corrosion inhibitors, research attention is now focused on the development of environmentally benign, biodegradable, cheap, and efficient options. In consideration of these facts, chrysin, a phytocompound of Populus tomentosa (Chinese white poplar) has been isolated and investigated for its anticorrosion abilities on carbon steel in a mixed acid and chloride system. This highlights the main purpose of the study.

Design/methodology/approach

Chrysin was isolated from Populus tomentosa using column chromatography and characterized using Fourier Transform Infrared Spectroscopy and Nuclear Magnetic Resonance Spectroscopy. The investigations are outlined based on theory (Fukui indices, condensed density functional theory and molecular dynamic simulation) and experiments (electrochemical, gravimetry and surface morphology examinations).

Findings

Theoretical evaluations permitted the description of the adsorption characteristics, and molecular interactions and orientations of chrysin on Fe substrate. The interaction energy for protonated and neutral chrysin on Fe (110) were −149.10 kcal/mol and −143.28 kcal/mol, respectively. Moreover, experimental investigations showed that chrysin is a potent mixed-type corrosion inhibitor for steel, whose effectiveness depends on its surrounding temperature and concentration. The optimum inhibition efficiency of 78.7% after 24 h for 1 g/L chrysin at 298 K indicates that the performance of chrysin, as a pure compound, compares favorably with other phytocompounds and plant extracts investigated under similar conditions. However, the inhibition efficiency decreased to 62.5% and 51.8% at 318 K after 48 h and 72 h, respectively.

Originality/value

The novelty of this study relies on the usage of a pure compound in corrosion suppression investigation, thus eliminating the unknown influences obtainable by the presence of multi-phytocompounds in plant extracts, thereby advancing the commercialization of bio-based corrosion inhibitors.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 10 of 17