Search results

1 – 10 of 88
Article
Publication date: 12 April 2024

Mandeep Singh, Deepak Bhandari and Khushdeep Goyal

The purpose of this paper is to examine the mechanical characteristics and optimization of wear parameters of hybrid (TiO2 + Y2O3) nanoparticles with Al matrix using squeeze…

Abstract

Purpose

The purpose of this paper is to examine the mechanical characteristics and optimization of wear parameters of hybrid (TiO2 + Y2O3) nanoparticles with Al matrix using squeeze casting technique.

Design/methodology/approach

The hybrid aluminium matrix nanocomposites (HAMNCs) were fabricated with varying concentrations of titanium oxide (TiO2) and yttrium oxide (Y2O3), from 2.5 to 10 Wt.% in 2.5 Wt.% increments. Dry sliding wear test variables were optimized using the Taguchi method.

Findings

The introduction of hybrid nanoparticles in the aluminium (Al) matrix was evenly distributed in contrast to the base matrix. HAMNC6 (5 Wt.% TiO2 + 5 Wt.% Y2O3) reported the maximum enhancement in mechanical properties (tensile strength, flexural strength, impact strength and density) and decrease in porosity% and elongation% among other HAMNCs. The results showed that the optimal combination of parameters to achieve the lowest wear rate was A3B3C1, or 15 N load, 1.5 m/s sliding velocity and 200 m sliding distance. The sliding distance showed the greatest effect on the dry sliding wear rate of HAMNC6 followed by applied load and sliding velocity. The fractured surfaces of the tensile sample showed traces of cracking as well as substantial craters with fine dimples and the wear worn surfaces were caused by abrasion, cracks and delamination of HAMNC6.

Originality/value

Squeeze-cast Al-reinforced hybrid (TiO2+Y2O3) nanoparticles have been investigated for their impact on mechanical properties and optimization of wear parameters.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 12 April 2024

Shivendra Singh Rathore and Chakradhara Rao Meesala

The purpose of this paper is to investigate the effect of the replacement of natural coarse aggregate (NCA) with different percentages of recycled coarse aggregate (RCA) on…

Abstract

Purpose

The purpose of this paper is to investigate the effect of the replacement of natural coarse aggregate (NCA) with different percentages of recycled coarse aggregate (RCA) on properties of low calcium fly ash (FA)-based geopolymer concrete (GPC) cured at oven temperature. Further, this paper aims to study the effect of partial replacement of FA by ground granulated blast slag (GGBS) in GPC made with both NCA and RCA cured under ambient temperature curing.

Design/methodology/approach

M25 grade of ordinary Portland cement (OPC) concrete was designed according to IS: 10262-2019 with 100% NCA as control concrete. Since no standard guidelines are available in the literature for GPC, the same mix proportion was adopted for the GPC by replacing the OPC with 100% FA and W/C ratio by alkalinity/binder ratio. All FA-based GPC mixes were prepared with 12 M of sodium hydroxide (NaOH) and an alkalinity ratio, i.e. sodium hydroxide to sodium silicate (NaOH:Na2SiO3) of 1:1.5, subjected to 90°C temperature for 48 h of curing. The NCA were replaced with 50% and 100% RCA in both OPC and GPC mixes. Further, FA was partially replaced with 15% GGBS in GPC made with the above percentages of NCA and RCA, and they were given ambient temperature curing with the same molarity of NaOH and alkalinity ratio.

Findings

The workability, compressive strength, split tensile strength, flexural strength, water absorption, density, volume of voids and rebound hammer value of all the mixes were studied. Further, the relationship between compressive strength and other mechanical properties of GPC mixes were established and compared with the well-established relationships available for conventional concrete. From the experimental results, it is found that the compressive strength of GPC under ambient curing condition at 28 days with 100% NCA, 50% RCA and 100% RCA were, respectively, 14.8%, 12.85% and 17.76% higher than those of OPC concrete. Further, it is found that 85% FA and 15% GGBS-based GPC with RCA under ambient curing shown superior performance than OPC concrete and FA-based GPC cured under oven curing.

Research limitations/implications

The scope of the present paper is limited to replace the FA by 15% GGBS. Further, only 50% and 100% RCA are used in place of natural aggregate. However, in future study, the replacement of FA by different amounts of GGBS (20%, 25%, 30% and 35%) may be tried to decide the optimum utilisation of GGBS so that the applications of GPC can be widely used in cast in situ applications, i.e. under ambient curing condition. Further, in the present study, the natural aggregate is replaced with only 50% and 100% RCA in GPC. However, further investigations may be carried out by considering different percentages between 50 and 100 with the optimum compositions of FA and GGBS to enhance the use of RCA in GPC applications. The present study is further limited to only the mechanical properties and a few other properties of GPC. For wider use of GPC under ambient curing conditions, the structural performance of GPC needs to be understood. Therefore, the structural performance of GPC subjected to different loadings under ambient curing with RCA to be investigated in future study.

Originality/value

The replacement percentage of natural aggregate by RCA may be further enhanced to 50% in GPC under ambient curing condition without compromising on the mechanical properties of concrete. This may be a good alternative for OPC and natural aggregate to reduce pollution and leads sustainability in the construction.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Book part
Publication date: 15 April 2024

Akansha Mer and Amarpreet Singh Virdi

Introduction: Small- and medium-sized enterprises (SMEs) play a vital role in the economic development of economies by generating job opportunities. Considering their…

Abstract

Introduction: Small- and medium-sized enterprises (SMEs) play a vital role in the economic development of economies by generating job opportunities. Considering their significance, understanding the challenges and skills required in these enterprises becomes essential and timely.

Purpose: This study aims to discuss the limitations and skill gaps faced by SMEs in emerging economies, such as India, Indonesia, Brazil, China, Malaysia, Ghana, Hungary, Saudi Arabia, South Africa, Türkiye, UAE, Iran, Kazakhstan, Türkiye, Zambia, Romania, and Vietnam.

Methodology: The study adopts a systematic review and meta-synthesis approach, utilising a literature review to comprehensively analyse, synthesise, and map the existing literature by identifying overarching themes.

Findings: The study examines the challenges SMEs encounter in emerging economies, including resource scarcity, limited access to credit, inadequate infrastructure, low technology adoption, restricted global market access, and ineffective marketing strategies. There is a notable shortage of skilled labour and development initiatives within SMEs in India even though the country has a sizeable pool of qualified workers. There is a pressing need for additional technical and managerial skills to remain competitive in the market. The findings of this study will assist HR managers in addressing skill shortages among employees in SMEs operating within emerging economies

Details

Contemporary Challenges in Social Science Management: Skills Gaps and Shortages in the Labour Market
Type: Book
ISBN: 978-1-83753-170-7

Keywords

Article
Publication date: 12 April 2024

Jun Zhao, Hao Zhang, Junwei Liu, Yanfen Gong, Songqiang Wan, Long Liu, Jiacheng Li, Ziyi Song, Shiyao Zhang and Qingrui Li

Based on the weak seismic performance and low ductility of coupled shear walls, engineered cementitious composites (ECC) is utilized to strengthen it to solve the deformation…

Abstract

Purpose

Based on the weak seismic performance and low ductility of coupled shear walls, engineered cementitious composites (ECC) is utilized to strengthen it to solve the deformation problem in tall buildings more effectively and study its mechanical properties more deeply.

Design/methodology/approach

The properties of reinforced concrete coupled shear wall (RCCSW) and reinforced ECC coupled shear wall (RECSW) have been studied by numerical simulation, which is in good agreement with the experimental results. The reliability of the finite element model is verified. On this basis, a detailed parameter study is carried out, including the strength and reinforcement ratio of longitudinal rebar, the placement height of ECC in the wall limb and the position of ECC connecting beams. The study indexes include failure mode and the skeleton curve.

Findings

The results suggest that the bearing capacity of RECSW is significantly affected by the ratio of longitudinal rebar. When the ratio of longitudinal rebar increases from 0.47% to 3.35%, the bearing capacity of RECSW increases from 250 kN to 303 kN, an increase of 21%. The strength of longitudinal rebar has little influence on the bearing capacity of RECSW. When the strength of the longitudinal rebar increases, the bearing capacity of RECSW increases little. The failure mode of RECSW can be improved by lowering the casting height of the ECC beam in a certain range.

Originality/value

In this paper, ECC is used to strengthen the coupled shear wall, and the accuracy of the finite element model is verified from the failure mode and skeleton curve. On this basis, the casting height of the ECC casting wall limb, the strength and reinforcement ratio of longitudinal rebar and the position of the ECC beam are studied in detail.

Details

International Journal of Structural Integrity, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 16 April 2024

Matt Broadway-Horner

The purpose of this study is to investigate the use of positive autoethnography for the consequences of conversion therapy. Life after conversion therapy is, for many, a…

Abstract

Purpose

The purpose of this study is to investigate the use of positive autoethnography for the consequences of conversion therapy. Life after conversion therapy is, for many, a life-changing episode, especially when combined with disfellowship. In recent years, positive autoethnography has grown substantially. The work of Tedeschi and Calhoun (2004), from the school of positive psychology, focuses on posttraumatic growth following a traumatic event or series of events.

Design/methodology/approach

Qualitative approach of positive autoethnography.

Findings

This innovative case study highlights personal struggles with grief, depression and suicidal ideation. In addition, the time elapsed has enabled a process to juggle with alternative ideas moving forward in salvaging a form of identity.

Research limitations/implications

Treatment as usual psychological therapies (TAUPT) provide many unhelpful triggers due to the same jargon used in both conversion therapy and TAUPT. Away from TAUPT, this writing exercise may help as a stand-alone post-conversion recovery process.

Practical implications

The post-conversion recovery process will offer much-needed help with only a few face-to-face meetings to aid the posttraumatic growth writing exercise.

Social implications

The suicide rates for sexual minority conversion therapy victims are eight times higher than those of other sexual minority groups and isolation levels. A single point of entry pathway for conversion therapy survivors is needed.

Originality/value

To the best of the author’s knowledge, the first of its kind to apply positive autoethnography using the model as a framework to understand the post-conversion therapy experience, looks for growth in five areas: relating to others, new possibilities, personal strength, spiritual change and appreciation of life.

Details

Mental Health and Social Inclusion, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2042-8308

Keywords

Article
Publication date: 17 April 2024

Vidyut Raghu Viswanath, Shivashankar Hiremath and Dundesh S. Chiniwar

The purpose of this study, most recent advancements in threedimensional (3D) printing have focused on the fabrication of components. It is typical to use different print settings…

Abstract

Purpose

The purpose of this study, most recent advancements in threedimensional (3D) printing have focused on the fabrication of components. It is typical to use different print settings, such as raster angle, infill and orientation to improve the 3D component qualities while fabricating the sample using a 3D printer. However, the influence of these factors on the characteristics of the 3D parts has not been well explored. Owing to the effect of the different print parameters in fused deposition modeling (FDM) technology, it is necessary to evaluate the strength of the parts manufactured using 3D printing technology.

Design/methodology/approach

In this study, the effect of three print parameters − raster angle, build orientation and infill − on the tensile characteristics of 3D-printed components made of three distinct materials − acrylonitrile styrene acrylate (ASA), polycarbonate ABS (PC-ABS) and ULTEM-9085 − was investigated. A variety of test items were created using a commercially accessible 3D printer in various configurations, including raster angle (0°, 45°), (0°, 90°), (45°, −45°), (45°, 90°), infill density (solid, sparse, sparse double dense) and orientation (flat, on-edge).

Findings

The outcome shows that variations in tensile strength and force are brought on by the effects of various printing conditions. In all possible combinations of the print settings, ULTEM 9085 material has a higher tensile strength than ASA and PC-ABS materials. ULTEM 9085 material’s on-edge orientation, sparse infill, and raster angle of (0°, −45°) resulted in the greatest overall tensile strength of 73.72 MPa. The highest load-bearing strength of ULTEM material was attained with the same procedure, measuring at 2,932 N. The tensile strength of the materials is higher in the on-edge orientation than in the flat orientation. The tensile strength of all three materials is highest for solid infill with a flat orientation and a raster angle of (45°, −45°). All three materials show higher tensile strength with a raster angle of (45°, −45°) compared to other angles. The sparse double-dense material promotes stronger tensile properties than sparse infill. Thus, the strength of additive components is influenced by the combination of selected print parameters. As a result, these factors interact with one another to produce a high-quality product.

Originality/value

The outcomes of this study can serve as a reference point for researchers, manufacturers and users of 3D-printed polymer material (PC-ABS, ASA, ULTEM 9085) components seeking to optimize FDM printing parameters for tensile strength and/or identify materials suitable for intended tensile characteristics.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 16 April 2024

Sulaiman Aliyu

This paper aims to examine the processes of sustainability reporting assurance (SRA) and the influence they have on shaping perception from disclosures. Given the evidence of…

Abstract

Purpose

This paper aims to examine the processes of sustainability reporting assurance (SRA) and the influence they have on shaping perception from disclosures. Given the evidence of inconsistencies and ambiguities in assurance processes, this paper examines how legitimacy is attained and maintained at different stages of SRA.

Design/methodology/approach

Evidence collected from 23 semi-structured interviews with assurance providers (APs), consultants, professionals and non-governmental organisations (NGOs) (non-APs) was used to conduct a thematic analysis from the perspectives of interviewees.

Findings

APs and non-APs are united in recognising the value of SRA, although, perspectives on transparency between the two groups differ. Experience and industry knowledge are essential to SRA delivery with non-APs preferring accounting APs. Nevertheless, non-APs are concerned about the role of companies in deciding assurance scope, as it can affect scrutiny. APs favour data accuracy (as opposed to data relevance) assurance due to team dynamics and internal review influences, with the latter also restricting assurance innovation. APs are interested in accessing better evidence and stakeholder engagement evaluations. Providing advisory services was not rejected by all APs. The perspectives of APs and non-APs demonstrate how progress in SRA has gained pragmatic legitimacy with noticeable gaps that serve to undermine attainment of moral legitimacy.

Research limitations/implications

SRA is a developing practice that will adopt changes as it continues to mature; some of these changes could impact findings in this research. General perspectives on SRA were sought from interviewees, this affected the ability for an in-depth focus on any of the range of interesting SRA issues that arose over the course of the research. Interviews were conducted with relevant parties in the SRA space that operate in the UK. Perspectives from parties outside the UK were not solicited.

Practical implications

Companies make an important decision to commission SRA. Findings in this research have highlighted specific non-APs issues of concern that can be useful in structuring operations and reporting regimes to facilitate assurance procedures. The findings will also be helpful to APs as they can direct more emphasis on stakeholder concerns towards demonstrating greater stakeholder accountability. Regulatory and standard setters can enact appropriate policies that can potentially drive the practice forward for assessment of cognitive legitimacy.

Social implications

The findings provide relevant account of stakeholder voices on the quality of corporate disclosures that has a direct effect on the wellbeing of communities and sustainability of societies. Collective stakeholder input on expectations can shape sustainability discourse.

Originality/value

This research demonstrates the applicability of financial audit quality indicators in SRA processes, extends the debate around the effectiveness of new audit fields and highlights the challenges of maintaining legitimacy with different audiences.

Details

Sustainability Accounting, Management and Policy Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-8021

Keywords

Article
Publication date: 15 April 2024

Majid Monajjemi and Fatemeh Mollaamin

Recently, powerful instruments for biomedical engineering research studies, including disease modeling, drug designing and nano-drug delivering, have been extremely investigated…

Abstract

Purpose

Recently, powerful instruments for biomedical engineering research studies, including disease modeling, drug designing and nano-drug delivering, have been extremely investigated by researchers. Particularly, investigation in various microfluidics techniques and novel biomedical approaches for microfluidic-based substrate have progressed in recent years, and therefore, various cell culture platforms have been manufactured for these types of approaches. These microinstruments, known as tissue chip platforms, mimic in vivo living tissue and exhibit more physiologically similar vitro models of human tissues. Using lab-on-a-chip technologies in vitro cell culturing quickly caused in optimized systems of tissues compared to static culture. These chipsets prepare cell culture media to mimic physiological reactions and behaviors.

Design/methodology/approach

The authors used the application of lab chip instruments as a versatile tool for point of health-care (PHC) applications, and the authors applied a current progress in various platforms toward biochip DNA sensors as an alternative to the general bio electrochemical sensors. Basically, optical sensing is related to the intercalation between glass surfaces containing biomolecules with fluorescence and, subsequently, its reflected light that arises from the characteristics of the chemical agents. Recently, various techniques using optical fiber have progressed significantly, and researchers apply highlighted remarks and future perspectives of these kinds of platforms for PHC applications.

Findings

The authors assembled several microfluidic chips through cell culture and immune-fluorescent, as well as using microscopy measurement and image analysis for RNA sequencing. By this work, several chip assemblies were fabricated, and the application of the fluidic routing mechanism enables us to provide chip-to-chip communication with a variety of tissue-on-a-chip. By lab-on-a-chip techniques, the authors exhibited that coating the cell membrane via poly-dopamine and collagen was the best cell membrane coating due to the monolayer growth and differentiation of the cell types during the differentiation period. The authors found the artificial membrane, through coating with Collagen-A, has improved the growth of mouse podocytes cells-5 compared with the fibronectin-coated membrane.

Originality/value

The authors could distinguish the differences across the patient cohort when they used a collagen-coated microfluidic chip. For instance, von Willebrand factor, a blood glycoprotein that promotes hemostasis, can be identified and measured through these type-coated microfluidic chips.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

Open Access
Article
Publication date: 2 January 2024

Guillermo Guerrero-Vacas, Jaime Gómez-Castillo and Oscar Rodríguez-Alabanda

Polyurethane (PUR) foam parts are traditionally manufactured using metallic molds, an unsuitable approach for prototyping purposes. Thus, rapid tooling of disposable molds using…

Abstract

Purpose

Polyurethane (PUR) foam parts are traditionally manufactured using metallic molds, an unsuitable approach for prototyping purposes. Thus, rapid tooling of disposable molds using fused filament fabrication (FFF) with polylactic acid (PLA) and glycol-modified polyethylene terephthalate (PETG) is proposed as an economical, simpler and faster solution compared to traditional metallic molds or three-dimensional (3D) printing with other difficult-to-print thermoplastics, which are prone to shrinkage and delamination (acrylonitrile butadiene styrene, polypropilene-PP) or high-cost due to both material and printing equipment expenses (PEEK, polyamides or polycarbonate-PC). The purpose of this study has been to evaluate the ease of release of PUR foam on these materials in combination with release agents to facilitate the mulding/demoulding process.

Design/methodology/approach

PETG, PLA and hardenable polylactic acid (PLA 3D870) have been evaluated as mold materials in combination with aqueous and solvent-based release agents within a full design of experiments by three consecutive molding/demolding cycles.

Findings

PLA 3D870 has shown the best demoldability. A mold expressly designed to manufacture a foam cushion has been printed and the prototyping has been successfully achieved. The demolding of the part has been easier using a solvent-based release agent, meanwhile the quality has been better when using a water-based one.

Originality/value

The combination of PLA 3D870 and FFF, along with solvent-free water-based release agents, presents a compelling low-cost and eco-friendly alternative to traditional metallic molds and other 3D printing thermoplastics. This innovative approach serves as a viable option for rapid tooling in PUR foam molding.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 27 September 2023

Ibtissem Alguirat, Fatma Lehyani and Alaeddine Zouari

Lean management tools are becoming increasingly applied in different types of organizations around the world. These tools have shown their significant contribution to improving…

156

Abstract

Purpose

Lean management tools are becoming increasingly applied in different types of organizations around the world. These tools have shown their significant contribution to improving business performance. In this vein, the purpose of this paper is to examine the influence of lean management on both occupational safety and operational excellence in Tunisian companies.

Design/methodology/approach

A survey was conducted among Tunisian companies, and it resulted in the collection of 62 responses that were analyzed using the software SPSS. In addition, a conceptual model linking the practices of the three basic concepts was designed to highlight the hypotheses of the research. Subsequently, factor analysis and structural equation method analysis were conducted to assess the validation of the assumptions.

Findings

The results obtained have shown that lean management has a significant impact on occupational safety. Similarly, occupational safety has a significant impact on operational excellence. However, lean management does not have a significant impact on operational excellence.

Originality/value

This work highlighted the involvement of small and medium-sized enterprise’s managers from emerging economies in the studied concepts’ practices. Likewise, it testified to the impacts of lean management on occupational safety and operational excellence in the Tunisian context.

Details

International Journal of Lean Six Sigma, vol. 15 no. 3
Type: Research Article
ISSN: 2040-4166

Keywords

1 – 10 of 88