Search results

1 – 10 of over 1000
Article
Publication date: 1 February 2003

M. Cenk Çavuşoğlu, Winthrop Williams, Frank Tendick and S. Shankar Sastry

Robotic telesurgery is a promising application of robotics to medicine, aiming to enhance the dexterity and sensation of regular and minimally invasive surgery through using…

1499

Abstract

Robotic telesurgery is a promising application of robotics to medicine, aiming to enhance the dexterity and sensation of regular and minimally invasive surgery through using millimeter‐scale robotic manipulators under the control of the surgeon. In this paper, the telesurgical system will be introduced with discussion of kinematic and control issues and presentation of in vitro experimental evaluation results.

Details

Industrial Robot: An International Journal, vol. 30 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 20 October 2021

Doaa H. Elgohary, Tamer F. Khalifa, Mona M. Salem, Nermin M. Aly, Elham Hassan and Ashraf A. Shamaa

The purpose of this work is to perform an application study on experimental animals (dogs) to investigate the efficiency of using weft knitted mesh fabric as cardiac support mesh…

Abstract

Purpose

The purpose of this work is to perform an application study on experimental animals (dogs) to investigate the efficiency of using weft knitted mesh fabric as cardiac support mesh to support left ventricular hypertrophy.

Design/methodology/approach

In this work, weft-knitted mesh sample “Knitted Cardiac Support Mesh” manufactured using Nylon (6, 6) yarns, with count 20 Denier and medium mesh size, was placed around the two ventricles to prevent further dilatation, support and reduce left ventricular wall stress.

Findings

Medical textile is a rapidly expanding field in technical textiles that are widely used in a variety of medical applications. One of these medical textile applications is “Knitted Cardiac Support Mesh”, which is used in the treatment of Dilated Cardiomyopathy.

Originality/value

After the implantation of the manufactured Knitted Cardiac Support Mesh around the myocardium, all dogs survived for three months before being euthanized, and some clinical examinations were performed to investigate and evaluate the sample performance. It was demonstrated from the experimental application, that the nylon mesh sample performed the best during the surgical operation due to its good ability to stretch and recover at a moderate rate, as well as the textile mesh lightweight.

Details

Research Journal of Textile and Apparel, vol. 26 no. 4
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 4 March 2021

Mohan Prasath Mani and Saravana Kumar Jaganathan

This study aims to fabricate an electrospun scaffold by combining radish (Ra) and cerium oxide (CeO2) into a polyurethane (PU) matrix through electrospinning and investigate its…

Abstract

Purpose

This study aims to fabricate an electrospun scaffold by combining radish (Ra) and cerium oxide (CeO2) into a polyurethane (PU) matrix through electrospinning and investigate its feasibility for cardiac applications.

Design/methodology/approach

Physicochemical properties were analysed through various characterization techniques such as scanning electron microscopy (SEM), Fourier transforms infrared transforms analysis (FTIR), contact angle measurements, thermal analysis, atomic force microscopy (AFM) and mechanical testing. Further, blood compatibility assessments were carried out through activated partial thromboplastin time (APTT) and prothrombin time (PT) and hemolysis assay to evaluate the anticoagulant nature.

Findings

PU/Ra and PU/Ra/CeO2 exhibited a smaller fibre diameter than PU. Ra and CeO2 were intercalated in the polyurethane matrix which was evidenced in the infrared analysis by hydrogen bond formation. PU/Ra composite exhibited hydrophilic nature whereas PU/Ra/CeO2 composite turned hydrophobic. Surface measurements depicted the lowered surface roughness for the PU/Ra and PU/Ra/CeO2 compared to the pristine PU. PU/Ra and PU/Ra/CeO2 displayed enhanced degradation rates and improved mechanical strength than the pristine PU. The blood compatibility assay showed that the PU/Ra and PU/Ra/CeO2 had delayed blood coagulation times and rendered less toxicity against red blood cells (RBC’s) than PU.

Originality/value

This is the first report on the use of radish/cerium oxide in cardiac applications. The developed composite (PU/Ra and PU/Ra/CeO2) with enhanced mechanical and anticoagulant nature will serve as an indisputable candidate for cardiac tissue regeneration.

Details

Pigment & Resin Technology, vol. 51 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 25 May 2012

Howard E. Williams

The purpose of this paper is to review the Braidwood Commission's two reports on the use of TASER conducted energy weapons in Canada and the death of Robert Dziekanski to…

1328

Abstract

Purpose

The purpose of this paper is to review the Braidwood Commission's two reports on the use of TASER conducted energy weapons in Canada and the death of Robert Dziekanski to determine whether the Commission's conclusions and subsequent recommendations constitute sound evidence‐based public policy.

Design/methodology/approach

This study analyzes Commissioner Braidwood's eight findings from the first report regarding the medical implications of the use of TASER devices by comparing those findings to the body of scientific, medical, and technical literature on the physiological effects of TASER technology. Additionally, this study reviews the potential ramifications of the Commissioner's recommendations regarding the use of TASER devices in both reports.

Findings

Evidence from the existing literature does not support the Commission's findings regarding the medical risks of the use of TASER technology. Recommendations to restrict the use of TASER devices are unlikely to reduce arrest‐related deaths, but they are likely to result in increased injuries to officers and suspects. Other recommendations, including training standards, testing requirements, reporting requirements, medical assistance, and research and review, are consistent with other reviews on the use of TASER technology and are necessary and appropriate to restore public confidence in police use‐of‐force.

Originality/value

The Braidwood Commission recommendations have had an immediate impact on the policies of several police agencies in Canada, including the Royal Canadian Mounted Police, but this study is the first critically to review whether those recommendations constitute formulation of sound evidence‐based public policy.

Details

Policing: An International Journal of Police Strategies & Management, vol. 35 no. 2
Type: Research Article
ISSN: 1363-951X

Keywords

Article
Publication date: 1 February 1997

H. Ammar, Y. Cherruault, A. Meulemans, D. Leguludec and C. Peter

Suggests a unidimensional model for determining the analytical solution of the diffusion of antibodies in tumours. By using the Alienor technique, identifies the parameters…

169

Abstract

Suggests a unidimensional model for determining the analytical solution of the diffusion of antibodies in tumours. By using the Alienor technique, identifies the parameters characterizing this diffusion and calculates the interval between steps.

Details

Kybernetes, vol. 26 no. 1
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 1 November 2000

Jaroslav Mackerle

Gives a bibliographical review of the finite element methods (FEMs) applied in biomedicine from the theoretical as well as practical points of view. The bibliography at the end…

1347

Abstract

Gives a bibliographical review of the finite element methods (FEMs) applied in biomedicine from the theoretical as well as practical points of view. The bibliography at the end of the paper contains 748 references to papers, conference proceedings and theses/dissertations dealing with the finite element analyses and simulations in biomedicine that were published between 1985 and 1999.

Details

Engineering Computations, vol. 17 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 15 November 2018

Nataraj Poomathi, Sunpreet Singh, Chander Prakash, Rajkumar V. Patil, P.T. Perumal, Veluchamy Amutha Barathi, Kalpattu K. Balasubramanian, Seeram Ramakrishna and N.U. Maheshwari

Bioprinting is a promising technology, which has gained a recent attention, for application in all aspects of human life and has specific advantages in different areas of…

Abstract

Purpose

Bioprinting is a promising technology, which has gained a recent attention, for application in all aspects of human life and has specific advantages in different areas of medicines, especially in ophthalmology. The three-dimensional (3D) printing tools have been widely used in different applications, from surgical planning procedures to 3D models for certain highly delicate organs (such as: eye and heart). The purpose of this paper is to review the dedicated research efforts that so far have been made to highlight applications of 3D printing in the field of ophthalmology.

Design/methodology/approach

In this paper, the state-of-the-art review has been summarized for bioprinters, biomaterials and methodologies adopted to cure eye diseases. This paper starts with fundamental discussions and gradually leads toward the summary and future trends by covering almost all the research insights. For better understanding of the readers, various tables and figures have also been incorporated.

Findings

The usages of bioprinted surgical models have shown to be helpful in shortening the time of operation and decreasing the risk of donor, and hence, it could boost certain surgical effects. This demonstrates the wide use of bioprinting to design more precise biological research models for research in broader range of applications such as in generating blood vessels and cardiac tissue. Although bioprinting has not created a significant impact in ophthalmology, in recent times, these technologies could be helpful in treating several ocular disorders in the near future.

Originality/value

This review work emphasizes the understanding of 3D printing technologies, in the light of which these can be applied in ophthalmology to achieve successful treatment of eye diseases.

Details

Rapid Prototyping Journal, vol. 25 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 22 August 2008

Martin Culjat, Chih‐Hung King, Miguel Franco, James Bisley, Warren Grundfest and Erik Dutson

Robotic surgery is limited by the lack of haptic feedback to the surgeon. The addition of tactile information may enable surgeons to feel tissue characteristics, appropriately…

2108

Abstract

Purpose

Robotic surgery is limited by the lack of haptic feedback to the surgeon. The addition of tactile information may enable surgeons to feel tissue characteristics, appropriately tension sutures, and identify pathologic conditions. Tactile feedback may also enable expansion of minimally invasive surgery to other surgical procedures and decrease the learning curve associated with robotic surgery. This paper aims to explore a system to provide tactile feedback.

Design/methodology/approach

A pneumatic balloon‐based system has been developed to provide tactile feedback to the fingers of the surgeon during robotic surgery. The system features a polydimethyl siloxane actuator with a thin‐film silicone balloon membrane and a compact pneumatic control system. The 1.0 × 1.8 × 0.4 cm actuators designed for the da Vinci system feature a 3 × 2 array of 3 mm inflatable balloons.

Findings

The low‐profile pneumatic system and actuator have been mounted directly onto the da Vinci surgical system. Human perceptual tests have indicated that pneumatic balloon‐based tactile input is an effective means to provide tactile information to the fingers of the surgeon.

Research limitations/implications

Application of a complete tactile feedback system is limited by current force sensing technologies.

Originality/value

The actuators have been designed such that they can be mounted directly onto the hand controls of the da Vinci robotic system, and are scalable such that they can be applied to various robotic applications.

Details

Industrial Robot: An International Journal, vol. 35 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 3 August 2015

Abas Abdoli, George S. Dulikravich, Chandrajit L Bajaj, David F Stowe and Salik M Jahania

Currently, human hearts destined for transplantation can be used for 4.5 hours which is often insufficient to test the heart, the purpose of this paper is to find a compatible…

Abstract

Purpose

Currently, human hearts destined for transplantation can be used for 4.5 hours which is often insufficient to test the heart, the purpose of this paper is to find a compatible recipient and transport the heart to larger distances. Cooling systems with simultaneous internal and external liquid cooling were numerically simulated as a method to extend the usable life of human hearts.

Design/methodology/approach

Coolant was pumped inside major veins and through the cardiac chambers and also between the heart and cooling container walls. In Case 1, two inlets and two outlets on the container walls steadily circulated the coolant. In the Case 2, an additional inlet was specified on the container wall thus creating a steady jet impinging one of the thickest parts of the heart. Laminar internal flow and turbulent external flow were used in both cases. Unsteady periodic inlet velocities at two frequencies were applied in Case 3 and Case 4 that had four inlets and four outlets on walls with turbulent flows used for internal and external circulations.

Findings

Computational results show that the proposed cooling systems are able to reduce the heart temperature from +37°C to almost uniform +5°C within 25 min of cooling, thus reducing its metabolic rate of decay by 95 percent. Calculated combined thermal and hydrodynamic stresses were below the allowable threshold. Unsteady flows did not make any noticeable difference in the speed of cooling and uniformity of temperature field.

Originality/value

This is the pioneering numerical study of conjugate convective cooling schemes capable of cooling organs much faster and more uniformly than currently practiced.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 25 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 June 2001

P. Glynne‐Jones and N.M. White

A range of self‐power technologies is reviewed. Self‐powered systems are defined as those that operate by harnessing ambient energy present within the environment of the system…

3476

Abstract

A range of self‐power technologies is reviewed. Self‐powered systems are defined as those that operate by harnessing ambient energy present within the environment of the system. As MEMS and smart‐material technologies mature, embedded and remote systems become more attractive. Self‐power offers a potential for solving the difficult problem of supplying energy to these devices.

Details

Sensor Review, vol. 21 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

1 – 10 of over 1000