Search results

1 – 10 of 262
Article
Publication date: 1 April 2024

Liang Ma, Qiang Wang, Haini Yang, Da Quan Zhang and Wei Wu

The aim of this paper is to solve the toxic and harmful problems caused by traditional volatile corrosion inhibitor (VCI) and to analyze the effect of the layered structure on the…

Abstract

Purpose

The aim of this paper is to solve the toxic and harmful problems caused by traditional volatile corrosion inhibitor (VCI) and to analyze the effect of the layered structure on the enhancement of the volatile corrosion inhibition prevention performance of amino acids.

Design/methodology/approach

The carbon dots-montmorillonite (DMT) hybrid material is prepared via hydrothermal process. The effect of the DMT-modified alanine as VCI for mild steel is investigated by volatile inhibition sieve test, volatile corrosion inhibition ability test, electrochemical measurement and surface analysis technology. It demonstrates that the DMT hybrid materials can improve the ability of alanine to protect mild steel against atmospheric corrosion effectively. The presence of carbon dots enlarges the interlamellar spacing of montmorillonite and allows better dispersion of alanine. The DMT-modified alanine has higher volatilization ability and an excellent corrosion inhibition of 85.3% for mild steel.

Findings

The DMT hybrid material provides a good template for the distribution of VCI, which can effectively improve the vapor-phase antirust property of VCI.

Research limitations/implications

The increased volatilization rate also means increased VCI consumption and higher costs.

Practical implications

Provides a new way of thinking to replace the traditional toxic and harmful VCI.

Originality/value

For the first time, amino acids are combined with nano laminar structures, which are used to solve the problem of difficult volatilization of amino acids.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 11 April 2024

Namrata Gangil, Arshad Noor Siddiquee, Jitendra Yadav, Shashwat Yadav, Vedant Khare, Neelmani Mittal, Sambhav Sharma, Rittik Srivastava and Sohail Mazher Ali Khan M.A.K. Mohammed

The purpose of this paper is to compile a comprehensive status report on pipes/piping networks across different industrial sectors, along with specifications of materials and…

Abstract

Purpose

The purpose of this paper is to compile a comprehensive status report on pipes/piping networks across different industrial sectors, along with specifications of materials and sizes, and showcase welding avenues. It further extends to highlight the promising friction stir welding as a single solid-state pipe welding procedure. This paper will enable all piping, welding and friction stir welding stakeholders to identify scope for their engagement in a single window.

Design/methodology/approach

The paper is a review paper, and it is mainly structured around sections on materials, sizes and standards for pipes in different sectors and the current welding practice for joining pipe and pipe connections; on the process and principle of friction stir welding (FSW) for pipes; identification of main welding process parameters for the FSW of pipes; effects of process parameters; and a well-carved-out concluding summary.

Findings

A well-carved-out concluding summary of extracts from thoroughly studied research is presented in a structured way in which the avenues for the engagement of FSW are identified.

Research limitations/implications

The implications of the research are far-reaching. The FSW is currently expanding very fast in the welding of flat surfaces and has evolved into a vast number of variants because of its advantages and versatility. The application of FSW is coming up late but catching up fast, and as a late starter, the outcomes of such a review paper may support stake holders to expand the application of this process from pipe welding to pipe manufacturing, cladding and other high-end applications. Because the process is inherently inclined towards automation, its throughput rate is high and it does not need any consumables, the ultimate benefit can be passed on to the industry in terms of financial gains.

Originality/value

To the best of the authors’ knowledge, this is the only review exclusively for the friction stir welding of pipes with a well-organized piping specification detailed about industrial sectors. The current pipe welding practice in each sector has been presented, and the avenues for engaging FSW have been highlighted. The FSW pipe process parameters are characteristically distinguished from the conventional FSW, and the effects of the process parameters have been presented. The summary is concise yet comprehensive and organized in a structured manner.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Open Access
Article
Publication date: 19 March 2024

Zhenlong Peng, Aowei Han, Chenlin Wang, Hongru Jin and Xiangyu Zhang

Unconventional machining processes, particularly ultrasonic vibration cutting (UVC), can overcome such technical bottlenecks. However, the precise mechanism through which UVC…

Abstract

Purpose

Unconventional machining processes, particularly ultrasonic vibration cutting (UVC), can overcome such technical bottlenecks. However, the precise mechanism through which UVC affects the in-service functional performance of advanced aerospace materials remains obscure. This limits their industrial application and requires a deeper understanding.

Design/methodology/approach

The surface integrity and in-service functional performance of advanced aerospace materials are important guarantees for safety and stability in the aerospace industry. For advanced aerospace materials, which are difficult-to-machine, conventional machining processes cannot meet the requirements of high in-service functional performance owing to rapid tool wear, low processing efficiency and high cutting forces and temperatures in the cutting area during machining.

Findings

To address this literature gap, this study is focused on the quantitative evaluation of the in-service functional performance (fatigue performance, wear resistance and corrosion resistance) of advanced aerospace materials. First, the characteristics and usage background of advanced aerospace materials are elaborated in detail. Second, the improved effect of UVC on in-service functional performance is summarized. We have also explored the unique advantages of UVC during the processing of advanced aerospace materials. Finally, in response to some of the limitations of UVC, future development directions are proposed, including improvements in ultrasound systems, upgrades in ultrasound processing objects and theoretical breakthroughs in in-service functional performance.

Originality/value

This study provides insights into the optimization of machining processes to improve the in-service functional performance of advanced aviation materials, particularly the use of UVC and its unique process advantages.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Article
Publication date: 24 February 2022

Rama Pavan Kumar Varma Indukuri, Rama Murty Raju Penmetsa, Srinivasa Rao Chalamalasetti and Rajesh Siriyala

Military and unmanned aerial vehicles (UAV) applications like rocket motor casings, missile covers and ship hulls use components that are made of maraging steel. Maraging steel…

34

Abstract

Purpose

Military and unmanned aerial vehicles (UAV) applications like rocket motor casings, missile covers and ship hulls use components that are made of maraging steel. Maraging steel has properties that are superior to other metals, making it more suitable for the fabrication of such components. A grey relational analysis (GRA) that is based on the Taguchi method has been utilised in the current study to optimise a laser beam welding (LBW) process. Further aspects such as GRA's optimum ranges and percentage contributions were also estimated.

Design/methodology/approach

A Taguchi L16 orthogonal array is utilised to design and conduct the experiments. Laser power (LP), welding speed (WS) and focal position (FP) are the three parameters are chosen for the process of welding. The output responses are the upper width of the heat-affected zone (HAZup), the upper width of the fusion zone (FZup) and the depth of penetration (DOP). The effect of the above key parameters on the responses was examined using an analysis of variance (ANOVA).

Findings

The results of ANOVA reveal that the parameter that has the most influence on the overall grey relational grade (GRG) is the FP. Finally, metallographic characterisation and a microstructural analysis are conducted on the weld bead geometry to demarcate the zone of HAZ and fusion zone (FZ).

Originality/value

As the most important criteria for LBW of maraging steels is the provision of higher DOP, higher FZ width and lower heat-affected zone, the study intended to prove the applicability of GRA technique in solving multi-objective optimisation problems in applications like defence and unmanned systems.

Details

International Journal of Intelligent Unmanned Systems, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 11 September 2023

Karrar Hussein, Habibollah Akbari, Rassoul Noorossana and Rostom Yadegari

This study aims to investigate the effects of process input parameters (welding current, welding time, electrode pressure and holding time) on the output responses (nugget…

33

Abstract

Purpose

This study aims to investigate the effects of process input parameters (welding current, welding time, electrode pressure and holding time) on the output responses (nugget diameter, peak load and indentation) that control the mechanical properties and quality of the joints in dissimilar resistance spot welding (RSW) for the third generation of advanced high-strength steel (AHSS) quenching and partitioning (Q&P980) and (SPFC780Y) high-strength steel spot welds.

Design/methodology/approach

Design of experiment approach with two level factors and center points was adopted. Destructive peel and shear tensile strengths were used to measure the responses. The significant factors were determined using analysis of variance implemented by Minitab 18 software. Finally, multiresponse optimization was carried out using the desirability function analysis method.

Findings

Holding time was the most significant factor influencing nugget diameter, whereas welding current had the greatest impact on peak load and indentation. Multiresponse optimization revealed that the optimal settings were a welding current of 12.5 KA, welding time of 18 cycles, electrode pressure of 420 Kgf and holding time of 10 cycles. These settings produced a nugget diameter of 8.0 mm, a peak load of 35.15 KN and an indentation of 22.5%, with a composite desirability function of 0.764.

Originality/value

This study provides an effective approach for multiple response optimization to the mechanical behavior of RSW joints, even though there have been few studies on the third generation of AHSS joints and none on the dissimilar joints of the materials used in this study.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 19 December 2023

Chetan Tembhurkar, Sachin Ambade, Ravinder Kataria, Jagesvar Verma and Abhijeet Moon

This paper aims to examine dissimilar joints for various applications in chemical, petrochemical, oil, gas, shipbuilding, defense, rail and nuclear industry.

40

Abstract

Purpose

This paper aims to examine dissimilar joints for various applications in chemical, petrochemical, oil, gas, shipbuilding, defense, rail and nuclear industry.

Design/methodology/approach

This study examined the effects of cold metal transfer welding on stainless steel welds for 316L austenitic and 430 ferritic dissimilar welds with ER316L, ER309L and without (autogenous) fillers. The microstructural observation was done with an optical microscope. The mechanical test was done to reveal the strength, hardness and toughness of the joint. The electrochemical polarization tests were done to reveal intergranular and pitting corrosion in the dissimilar joints.

Findings

This microstructural study shows the presence of austenitic and ferritic phases with vermicular ferrite for ER309L filler weld, and for ER316L filler weld specimen shows predominately martensitic phase in the weld region, whereas the autogenous weld shows lathy ferrite mixed with martensitic phase. Mechanical test results indicated that filler welded specimen (ER316L and ER309L) has relatively higher strength and hardness than the autogenous weld, whereas ER316L filler weld exhibited the highest impact toughness than ER309L filler weld and lowest in autogenous weld. The electrochemical corrosion results displayed the highest degree of sensitization (DOS) in without filler welded specimen (45.62%) and lower in case of filler welded specimen ER309L (4.95%) and least in case of ER316L filler welded specimen (3.51%). The high DOS in non-filler welded specimen is correlated with the chromium carbide formation. The non-filler welded specimen shows the highest pitting corrosion attack as compared to the ER316L filler weld specimen and relatively better in ER309L filler welded specimen. The highest pitting corrosion resistance is related with the high chromium content in ER309L composition.

Originality/value

This experimental study is original and conducted with 316L and 430 stainless steel with ER316L, ER309 and without fillers, which will help the oil, shipbuilding and chemical industries.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 2 March 2023

Aamir Hassan and Javed Ahmad Bhat

Concrete-filled double skin tube (CFDST) columns are considered one of the most effective steel-concrete composite sections owing to the higher load carrying capacity as compared…

Abstract

Purpose

Concrete-filled double skin tube (CFDST) columns are considered one of the most effective steel-concrete composite sections owing to the higher load carrying capacity as compared to its counterpart concrete-filled tube (CFT) columns. This paper aims to numerically investigate the performance of axially loaded, circular CFDST short columns, with the innovative strengthening technique of providing stiffeners in outer tubes. Circular steel hollow sections have been adopted for inner as well as outer tubes, while varying the length of rectangular steel stiffeners, fixed inside the outer tubes only, to check the effect of stiffeners in partially and full-length stiffened CFDST columns.

Design/methodology/approach

The behaviour of these CFDST columns is investigated numerically by using a verified finite element analysis (FEA) model from the ABAQUS. The behaviour of 20-unstiffened, 80-partially stiffened and 20-full-length stiffened CFDST columns is studied, while varying the strength of steel (fyo = 250–750 MPa) and concrete (30–90 MPa).

Findings

The FEA results are verified by comparing them with the previous test results. FEA study has exhibited that, there is a 7%–25% and 39%–49% increase in peak-loads in partially stiffened and full-length stiffened CFDST columns, respectively, compared to unstiffened CFDST columns.

Originality/value

Enhanced strength has been observed in partially stiffened and full-length stiffened CFDST columns as compared to unstiffened CFDST columns. Also, a significant effect of strength of concrete has not been observed as compared to the strength of steel.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 5 April 2024

Zhe Liu, Yichen Yang and Xiuchen Wang

Stainless-steel electromagnetic shielding (EMS) fabrics are widely applied as protective materials against electromagnetic interference (EMI). However, these fabrics primarily…

Abstract

Purpose

Stainless-steel electromagnetic shielding (EMS) fabrics are widely applied as protective materials against electromagnetic interference (EMI). However, these fabrics primarily shield electromagnetic waves through reflection, which can lead to the formation of resonance effects that severely compromise their protective capabilities and potentially cause secondary electromagnetic pollution in the external environment.

Design/methodology/approach

In this paper, carbon nanotube fibers are added via spacing method to replace some stainless-steel fibers to impart absorbing properties to stainless-steel EMS fabric. The shielding effectiveness (SE) of the EMS fabrics across various polarization directions is analyzed. Additionally, a spacing arrangement for the carbon nanotube fibers is designed. The EMS fabric with carbon nanotube fibers is manufactured using a semi-automatic sample loom, and its SE is tested using a small window method test box in both vertical and horizontal polarization directions.

Findings

According to the experimental data and electromagnetic theory analysis, it is determined that when the spacing between the carbon nanotube fibers is less than a specific distance, the SE of the stainless-steel EMS fabric significantly improves. The fabric exhibits stable absorbing properties within the tested frequency range, effectively addressing the issue of secondary damage that arises from relying solely on reflective shielding. Conversely, as the spacing between the carbon nanotube fibers exceeds this distance, the SE diminishes. Notably, the SE in the vertical polarization direction is substantially higher than that in the horizontal polarization direction at the same frequency.

Originality/value

This study provides a new path for the development of high-performance EMS fabrics with good wave-absorption characteristics and SE.

Details

International Journal of Clothing Science and Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 23 June 2023

Wilfred Emori, Paul C. Okonkwo, Hitler Louis, Ling Liu, Ernest C. Agwamba, Tomsmith Unimuke, Peter Okafor, Atowon D. Atowon, Anthony Ikechukwu Obike and ChunRu Cheng

Owing to the toxicity, biodegradability, and cost of most corrosion inhibitors, research attention is now focused on the development of environmentally benign, biodegradable…

Abstract

Purpose

Owing to the toxicity, biodegradability, and cost of most corrosion inhibitors, research attention is now focused on the development of environmentally benign, biodegradable, cheap, and efficient options. In consideration of these facts, chrysin, a phytocompound of Populus tomentosa (Chinese white poplar) has been isolated and investigated for its anticorrosion abilities on carbon steel in a mixed acid and chloride system. This highlights the main purpose of the study.

Design/methodology/approach

Chrysin was isolated from Populus tomentosa using column chromatography and characterized using Fourier Transform Infrared Spectroscopy and Nuclear Magnetic Resonance Spectroscopy. The investigations are outlined based on theory (Fukui indices, condensed density functional theory and molecular dynamic simulation) and experiments (electrochemical, gravimetry and surface morphology examinations).

Findings

Theoretical evaluations permitted the description of the adsorption characteristics, and molecular interactions and orientations of chrysin on Fe substrate. The interaction energy for protonated and neutral chrysin on Fe (110) were −149.10 kcal/mol and −143.28 kcal/mol, respectively. Moreover, experimental investigations showed that chrysin is a potent mixed-type corrosion inhibitor for steel, whose effectiveness depends on its surrounding temperature and concentration. The optimum inhibition efficiency of 78.7% after 24 h for 1 g/L chrysin at 298 K indicates that the performance of chrysin, as a pure compound, compares favorably with other phytocompounds and plant extracts investigated under similar conditions. However, the inhibition efficiency decreased to 62.5% and 51.8% at 318 K after 48 h and 72 h, respectively.

Originality/value

The novelty of this study relies on the usage of a pure compound in corrosion suppression investigation, thus eliminating the unknown influences obtainable by the presence of multi-phytocompounds in plant extracts, thereby advancing the commercialization of bio-based corrosion inhibitors.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 22 February 2024

Thien Vuong Nguyen, Vy Do Truc, Tuan Anh Nguyen and Dai Lam Tran

This study aims to explore the synergistic effect of oxide nanoparticles (ZnO, Fe2O3, SiO2) and cerium nitrate inhibitor on anti-corrosion performance of epoxy coating. First…

36

Abstract

Purpose

This study aims to explore the synergistic effect of oxide nanoparticles (ZnO, Fe2O3, SiO2) and cerium nitrate inhibitor on anti-corrosion performance of epoxy coating. First, cerium nitrate inhibitors are absorbed on the surface of various oxide nanoparticles. Thereafter, epoxy nanocomposite coatings have been fabricated on carbon steel substrate using these oxide@Ce nanoparticles as both nano-fillers and nano-inhibitors.

Design/methodology/approach

To evaluate the impact of oxides@Ce nanoparticles on mechanical properties of epoxy coating, the abrasion resistance and impact resistance of epoxy coatings have been examined. To study the impact of oxides@Ce nanoparticles on anti-corrosion performance of epoxy coating for steel, the electrochemical impedance spectroscopy has been carried out in 3% NaCl solution.

Findings

ZnO@Ce3+ and SiO2@Ce3+ nanoparticles provide more enhancement in the epoxy pore network than modification of the epoxy/steel interface. Whereas, Fe2O3@Ce3+ nanoparticles have more to do with modification of the epoxy/steel interface than to change the epoxy pore network.

Originality/value

Incorporation of both oxide nanoparticles and inorganic inhibitor into the epoxy resin is a promising approach for enhancing the anti-corrosion performance of carbon steel.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

1 – 10 of 262