Search results

1 – 10 of 207
Article
Publication date: 12 July 2023

Payman Sahbah Ahmed, Ava Ali Kamal, Niveen Jamal Abdulkader, Basim Mohammed Fadhil and Fuad Khoshnaw

Pipelines are subject to pits, holes and cracks after staying in service for a while, especially in harsh environments. To repair the pipelines, composite materials are used, due…

Abstract

Purpose

Pipelines are subject to pits, holes and cracks after staying in service for a while, especially in harsh environments. To repair the pipelines, composite materials are used, due to composite materials' low cost, high-corrosion resistance and easy handling. This study aims to investigate the reliability of the blister test for evaluating the bonding strength of multiwall carbon nanotube (MWCNT) on woven carbon-reinforced epoxy.

Design/methodology/approach

Flexural, hardness and Izod impact tests were used to evaluate MWCNT effect on the epoxy by adding different amounts, 0.2, 0.4, 0.6, 0.8 and 1 wt. %, of MWCNT, to be compared with pure epoxy.

Findings

The results showed that 0.8 wt.% gives the highest strength. The experimental results of 0.8 wt.% MWCNT reinforced carbon composite was compared with the finite element model under blister test, and the results showed high similarities.

Originality/value

Evaluation of the reliability and the advantages of MWCNT considering the high aspect ratio and high tensile strength, which is more than 15 times compared to steel, MWCNT enhances the strength, stiffness and toughness of epoxy used as a matrix in repairing pipelines, which leads to an increase in the resistance of composite materials against oil internal pressure before delamination.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 15 September 2023

Payman Sahbah Ahmed

Epoxy resins are widely used in a variety of engineering applications, including composite wind turbine blades used in the renewable energy industry, highly complex structural…

Abstract

Purpose

Epoxy resins are widely used in a variety of engineering applications, including composite wind turbine blades used in the renewable energy industry, highly complex structural components for aircraft, paints, coatings, industrial tooling, biomedical systems, adhesives, electronics and automotive. Epoxies' low fracture toughness is one of the key obstacles preventing its adoption in a wider range of applications. To address epoxy's low fracture toughness, this paper aims to examine the roles of intra-ply hybridization and nano reinforcing.

Design/methodology/approach

This paper investigates the role of intra-ply hybridization of glass-carbon woven fibers and adding 0.8 wt.% of multiwall carbon nanotube (MWCNT) nano reinforcement to overcome the low fracture toughness of epoxy. A bending test is used to calculate the composites elastic parameters, and a notched sample three-point bending test is used to show crack behavior in addition to using materials characterization methods to reveal the effect of the MWCNT on structure, bonding, glass transition temperature (Tg) and dispersion of MWCNT in the matrix. Furthermore, this paper suggests using the finite element method to overcome the difficulty in calculating the crack extension.

Findings

Intra-ply hybridization and MWCNT reinforcement decrease the crack extension of epoxy with time. The inclusion of high-strength carbon fiber increased the fracture toughness of glass composite. Furthermore, the existence of MWCNT in the surrounding area of the notch in epoxy composites hinders crack propagation and provides stiffness at the interface by bridging the crack and eventually enhancing its fracture toughness.

Originality/value

Studying the role of intra-ply hybridization of glass-carbon woven fibers and adding 0.8 wt.% of MWCNT nano reinforcement to overcome the low fracture toughness of epoxy. Additionally, this research recommends using the finite element method to overcome the challenge of computing the crack extension.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 15 September 2022

Natiq Yaseen Taha Al-Menahlawi, Mohammad Reza Khoshravan Azar, Tajbakhsh Navid Chakherlou and Hussein Al-Bugharbee

The purpose of this study is a numerical simulation and an analytical analysis about the low-velocity impact on a functionally graded porous plate with porosity distribution in…

Abstract

Purpose

The purpose of this study is a numerical simulation and an analytical analysis about the low-velocity impact on a functionally graded porous plate with porosity distribution in the thickness direction. In this article, polymethyl methacrylate is used for matrix, and single-walled carbon nanotube (CNTs) (10,10) with consideration agglomeration sizes and lumping of CNT inside the agglomerations is applied for reinforcement.

Design/methodology/approach

In analytical formulation, the non-linear Hertz contact law is applied for interaction between projectile and plate surface. High-order shear deformation plate theory is developed, and energy of the system for impactor and plate is written. The governing equations are derived using Ritz method and Lagrange equations and are solved using the fourth-order Runge–Kutta method. Also, ABAQUS finite element model of functionally graded porous plate with all edges simply supported and reinforced by CNT under low-velocity impact is simulated and is compared with those is achieved in the present analytical approach.

Findings

In parametric studies, the influence of porosity distribution patterns include uniform, non-uniform symmetric and non-uniform asymmetric on the histories of contact force and impactor displacement of simply supported plate reinforced by CNT are presented. Eventually, the effects of porosity coefficient, impactor initial velocity, impactor radius and CNTs lumping inside agglomerations for non-uniform symmetric distribution patterns are discussed in impact event in detail.

Originality/value

In this paper, the effect of combination of polymethyl methacrylate and CNTs with consideration agglomeration sizes and lumping of CNTs inside the agglomerations in the form of a functionally graded porous plate is studied in the problem of low-velocity impact analysis.

Article
Publication date: 7 August 2023

Jiayuan Yan, Xiaoliang Zhang and Yanming Wang

As a high-performance engineering plastic, polyimide (PI) is widely used in the aerospace, electronics and automotive industries. This paper aims to review the latest progress in…

Abstract

Purpose

As a high-performance engineering plastic, polyimide (PI) is widely used in the aerospace, electronics and automotive industries. This paper aims to review the latest progress in the tribological properties of PI-based composites, especially the effects of nanofiller selection, composite structure design and material modification on the tribological and mechanical properties of PI-matrix composites.

Design/methodology/approach

The preparation technology of PI and its composites is introduced and the effects of carbon nanotubes (CNTs), carbon fibers (CFs), graphene and its derivatives on the mechanical and tribological properties of PI-based composites are discussed. The effects of different nanofillers on tensile strength, tensile modulus, coefficient of friction and wear rate of PI-based composites are compared.

Findings

CNTs can serve as the strengthening and lubricating phase of PI, whereas CFs can significantly enhance the mechanical properties of the matrix. Two-dimensional graphene and its derivatives have a high modulus of elasticity and self-lubricating properties, making them ideal nanofillers to improve the lubrication performance of PI. In addition, copolymerization can improve the fracture toughness and impact resistance of PI, thereby enhancing its mechanical properties.

Originality/value

The mechanical and tribological properties of PI matrix composites vary depending on the nanofiller. Compared with nanofibers and nanoparticles, layered reinforcements can better improve the friction properties of PI composites. The synergistic effect of different composite fillers will become an important research system in the field of tribology in the future.

Details

Industrial Lubrication and Tribology, vol. 75 no. 8
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 13 July 2023

Abdul Lateef, Zulfiqar Ali Raza, Muhammad Aslam, Muhammad Shoaib Ur Rehman, Asma Iftikhar and Abdul Zahir

This study aims to fabricate multiwalled carbon nanotubes (MWCNTs)-mediated polyvinyl alcohol (PVA) composite films using the solution casting approach.

Abstract

Purpose

This study aims to fabricate multiwalled carbon nanotubes (MWCNTs)-mediated polyvinyl alcohol (PVA) composite films using the solution casting approach.

Design/methodology/approach

The prepared films were evaluated for diverse structural, surface, optical and electrical attributes using advanced analytical techniques, i.e. electron microscopy for surface morphology, Fourier transform infrared spectroscopy for tracing chemical functionalities, x-ray diffraction (XRD) for crystal patterns, water contact angle (WCA) analysis for surface wettability and UV visible spectroscopy for optical absorption parameters. The specimens were also investigated for certain rheological, mechanical and electrical properties, where applicable.

Findings

The surface morphology results expressed a better dispersion of MWCNTs in the resultant PVA-based nanocomposite film. The XRD analysis exhibited that the nanocomposite film was crystalline. The surface wettability analysis indicated that with the inclusion of MWCNTs, the WCA of the resultant nanocomposite film improved to 89.4° from 44° with the pristine PVA film. The MWCNTs (1.00%, w/w) incorporated PVA-based film exhibited a tensile strength of 54.0 MPa as compared to that of native PVA as 25.3 MPa film. There observed a decreased bandgap (from 5.25 to 5.14 eV) on incorporating the MWCNTs in the PVA-based nanocomposite film.

Practical implications

The MWCNTs’ inclusion in the PVA matrix could enhance the AC conductivity of the resultant nanocomposite film. The prepared nanocomposite film might be useful in designing certain optoelectronic devices.

Originality/value

The results demonstrated the successful MWCNTs mediation in the PVA-based composite films expressed good intercalation of the precursors; this resulted in decreased bandgap, usually, desirable for optoelectronic applications.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 12 April 2023

Mehdi Ranjbar-Roeintan

The purpose of this article is to investigate the porosity-dependent impact study of a plate with Winkler–Pasternak elastic foundations reinforced with agglomerated carbon…

64

Abstract

Purpose

The purpose of this article is to investigate the porosity-dependent impact study of a plate with Winkler–Pasternak elastic foundations reinforced with agglomerated carbon nanotubes (CNTs).

Design/methodology/approach

Based on the first-order shear deformation plate theory, the strain energy related to elastic foundations is added to system strain energy. Using separation of variables and Lagrangian generalized equations, the nonlinear and time-dependent motion equations are extracted.

Findings

Verification examples are fulfilled to prove the precision and effectiveness of the presented model. The impact outputs illustrate the effects of various distribution of CNTs porosity functions along the plate thickness direction, Winkler–Pasternak elastic foundations and different boundary conditions on the Hertz contact law, the plate center displacement, impactor displacement and impactor velocity.

Originality/value

This paper investigates the effect of Winkler–Pasternak elastic foundations on the functionally graded porous plate reinforced with agglomerated CNTs under impact loading.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 8
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 25 March 2024

Fatemeh Mollaamin and Majid Monajjemi

This study aims to investigate the potential of the decorated boron nitride nanocage (BNNc) with transition metals for capturing carbon monoxide (CO) as a toxic gas in the air.

Abstract

Purpose

This study aims to investigate the potential of the decorated boron nitride nanocage (BNNc) with transition metals for capturing carbon monoxide (CO) as a toxic gas in the air.

Design/methodology/approach

BNNc was modeled in the presence of doping atoms of titanium (Ti), vanadium (V), chromium (Cr), cobalt (Co), copper (Cu) and zinc (Zn) which can increase the gas sensing ability of BNNc. In this research, the calculations have been accomplished by CAM–B3LYP–D3/EPR–3, LANL2DZ level of theory. The trapping of CO molecules by (Ti, V, Cr, Co, Cu, Zn)–BNNc has been successfully incorporated because of binding formation consisting of C → Ti, C → V, C → Cr, C → Co, C → Cu, C → Zn.

Findings

Nuclear quadrupole resonance data has indicated that Cu-doped or Co-doped on pristine BNNc has high fluctuations between Bader charge versus electric potential, which can be appropriate options with the highest tendency for electron accepting in the gas adsorption process. Furthermore, nuclear magnetic resonance spectroscopy has explored that the yield of electron accepting for doping atoms on the (Ti, V, Cr, Co, Cu, Zn)–BNNc in CO molecules adsorption can be ordered as follows: Cu > Co >> Cr > Zn ˜ V> Ti that exhibits the strength of the covalent bond between Ti, V, Cr, Co, Cu, Zn and CO. In fact, the adsorption of CO gas molecules can introduce spin polarization on the (Ti, V, Cr, Co, Cu, Zn)–BNNc which specifies that these surfaces may be used as magnetic-scavenging surface as a gas detector. Gibbs free energy based on IR spectroscopy for adsorption of CO molecules adsorption on the (Ti, V, Cr, Co, Cu, Zn)–BNNc have exhibited that for a given number of carbon donor sites in CO, the stabilities of complexes owing to doping atoms of Ti, V, Cr, Co, Cu, Zn can be considered as: CO →Cu–BNNc >> CO → Co–BNNc > CO → Cr–BNNc > CO → V–BNNc > CO → Zn–BNNc > CO → Ti–BNNc.

Originality/value

This study by using materials modeling approaches and decorating of nanomaterials with transition metals is supposed to introduce new efficient nanosensors in applications for selective sensing of carbon monoxide.

Details

Sensor Review, vol. 44 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 26 September 2023

Talwinder Singh, Chandan Deep Singh and Rajdeep Singh

Because many cutting fluids contain hazardous chemical constituents, industries and researchers are looking for alternative methods to reduce the consumption of cutting fluids in…

149

Abstract

Purpose

Because many cutting fluids contain hazardous chemical constituents, industries and researchers are looking for alternative methods to reduce the consumption of cutting fluids in machining operations due to growing awareness of ecological and health issues, government strict environmental regulations and economic pressures. Therefore, the purpose of this study is to raise awareness of the minimum quantity lubrication (MQL) technique as a potential substitute for environmental restricted wet (flooded) machining situations.

Design/methodology/approach

The methodology adopted for conducting a review in this study includes four sections: establishment of MQL technique and review of MQL machining performance comparison with dry and wet (flooded) environments; analysis of the past literature to examine MQL turning performance under mono nanofluids (M-NF); MQL turning performance evaluation under hybrid nanofluids (H-NF); and MQL milling, drilling and grinding performance assessment under M-NF and H-NF.

Findings

From the extensive review, it has been found that MQL results in lower cutting zone temperature, reduction in cutting forces, enhanced tool life and better machined surface quality compared to dry and wet cutting conditions. Also, MQL under H-NF discloses notably improved tribo-performance due to the synergistic effect caused by the physical encapsulation of spherical nanoparticles between the nanosheets of lamellar structured nanoparticles when compared with M-NF. The findings of this study recommend that MQL with nanofluids can replace dry and flood lubrication conditions for superior machining performance.

Practical implications

Machining under the MQL regime provides a dry, clean, healthy and pollution-free working area, thereby resulting the machining of materials green and environmentally friendly.

Originality/value

This paper describes the suitability of MQL for different machining operations using M-NF and H-NF.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-05-2023-0131/

Details

Industrial Lubrication and Tribology, vol. 75 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 22 February 2024

Fatemeh Mollaamin and Majid Monajjemi

Bisphosphonate (BP) medications can be applied to prohibit the damage of bone density and the remedy of bone illnesses such as osteoporosis. As the metal chelating of phosphonate…

Abstract

Purpose

Bisphosphonate (BP) medications can be applied to prohibit the damage of bone density and the remedy of bone illnesses such as osteoporosis. As the metal chelating of phosphonate groups are nearby large with six O atoms possessing the high negative charge, these compounds are active toward producing the chelated complexes through drug design method. BP agents have attracted much attention for the clinical treatment of some skeletal diseases depicted by enhancing of osteoclast-mediated bone resorption.

Design/methodology/approach

In this work, it has been accomplished the CAM-B3LYP/6–311+G(d, p)/LANL2DZ to estimate the susceptibility of SWCNT for adsorbing alendronate, ibandronate, neridronate and pamidronate chelated to two metal cations of 2Mg2+, 2Ca2+, 2Sr2+ through nuclear magnetic resonance and thermodynamic parameters. Therefore, the data has explained that the feasibility of using SWCNT and BP agents becomes the norm in metal chelating of drug delivery system which has been selected through alendronate → 2X, ibandronate → 2X, neridronate → 2X and pamidronate → 2X (X = Mg2+/Ca2+/Sr2+) complexes.

Findings

The thermodynamic results have exhibited that the substitution of 2Ca2+ cation by 2Sr2+ cation in the structure of bioactive glasses can be efficient for treating vertebral complex fractures. However, it has been observed the most fluctuation in the Gibbs free energy for BPs → 2Sr2+ at 300 K. Furthermore, Monte Carlo simulation has resulted by increasing the dielectric constant in the aqueous medium can enhance the stability and efficiency of BP drugs for preventing the loss of bone density and treating the osteoporosis.

Originality/value

According to this research, by incorporation of chelated 2Mg2+, 2Ca2+ and 2Sr2+ cations to BP drugs adsorbed onto (5, 5) armchair SWCNT, the network compaction would increase owing to the larger atomic radius of Sr2+ cation rather than Ca2+ and Mg2+, respectively.

Details

Sensor Review, vol. 44 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 5 April 2024

Zhe Liu, Yichen Yang and Xiuchen Wang

Stainless-steel electromagnetic shielding (EMS) fabrics are widely applied as protective materials against electromagnetic interference (EMI). However, these fabrics primarily…

Abstract

Purpose

Stainless-steel electromagnetic shielding (EMS) fabrics are widely applied as protective materials against electromagnetic interference (EMI). However, these fabrics primarily shield electromagnetic waves through reflection, which can lead to the formation of resonance effects that severely compromise their protective capabilities and potentially cause secondary electromagnetic pollution in the external environment.

Design/methodology/approach

In this paper, carbon nanotube fibers are added via spacing method to replace some stainless-steel fibers to impart absorbing properties to stainless-steel EMS fabric. The shielding effectiveness (SE) of the EMS fabrics across various polarization directions is analyzed. Additionally, a spacing arrangement for the carbon nanotube fibers is designed. The EMS fabric with carbon nanotube fibers is manufactured using a semi-automatic sample loom, and its SE is tested using a small window method test box in both vertical and horizontal polarization directions.

Findings

According to the experimental data and electromagnetic theory analysis, it is determined that when the spacing between the carbon nanotube fibers is less than a specific distance, the SE of the stainless-steel EMS fabric significantly improves. The fabric exhibits stable absorbing properties within the tested frequency range, effectively addressing the issue of secondary damage that arises from relying solely on reflective shielding. Conversely, as the spacing between the carbon nanotube fibers exceeds this distance, the SE diminishes. Notably, the SE in the vertical polarization direction is substantially higher than that in the horizontal polarization direction at the same frequency.

Originality/value

This study provides a new path for the development of high-performance EMS fabrics with good wave-absorption characteristics and SE.

Details

International Journal of Clothing Science and Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0955-6222

Keywords

1 – 10 of 207