Search results

1 – 10 of 189
Article
Publication date: 12 May 2023

Jiongyi Yan, Emrah Demirci and Andrew Gleadall

This study/paper aims to develop fundamental understanding of mechanical properties for multiple fibre-reinforced materials by using a single-filament-wide tensile-testing…

Abstract

Purpose

This study/paper aims to develop fundamental understanding of mechanical properties for multiple fibre-reinforced materials by using a single-filament-wide tensile-testing approach.

Design/methodology/approach

In this study, recently validated single-filament-wide tensile-testing specimens were used for four polymers with and without short-fibre reinforcement. Critically, this specimen construct facilitates filament orientation control, for representative longitudinal and transverse composite directions, and enables measurement of interlayer bonded area, which is impossible with “slicing” software but essential in effective property measurement. Tensile properties were studied along the direction of extruded filaments (F) and normal to the interlayer bond (Z) both experimentally and theoretically via the Kelly–Tyson model, bridging model and Halpin–Tsai model.

Findings

Even though the four matrix-material properties varied hugely (1,440% difference in ductility), consistent material-independent trends were identified when adding fibres: ductility reduced in both F- and Z-directions; stiffness and strength increased in F but decreased or remained similar in Z; Z:F strength anisotropy and stiffness anisotropy ratios increased. Z:F strain-at-break anisotropy ratio decreased; stiffness and strain-at-break anisotropy were most affected by changes to F properties, whereas strength anisotropy was most affected by changes to Z properties.

Originality/value

To the best of the authors’ knowledge, this is the first study to assess interlayer bond strength of composite materials based on measured interlayer bond areas, and consistent fibre-induced properties and anisotropy were found. The results demonstrate the critical influence of mesostructure and microstructure for three-dimensional printed composites. The authors encourage future studies to use specimens with a similar level of control to eliminate structural defects (inter-filament voids and non-uniform filament orientation).

Details

Rapid Prototyping Journal, vol. 29 no. 7
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 16 November 2021

M. Balasubramanian, Thozhuvur Govindaraman Loganathan and R. Srimath

The purpose of this study is to understand the behavior of hybrid bio-composites under varied applications.

Abstract

Purpose

The purpose of this study is to understand the behavior of hybrid bio-composites under varied applications.

Design/methodology/approach

Fabrication methods and material characterization of various hybrid bio-composites are analyzed by studying the tensile, impact, flexural and hardness of the same. The natural fiber is a manufactured group of assembly of big or short bundles of fiber to produce one or more layers of flat sheets. The natural fiber-reinforced composite materials offer a wide range of properties that are suitable for many engineering-related fields like aerospace, automotive areas. The main characteristics of natural fiber composites are durability, low cost, low weight, high specific strength and equally good mechanical properties.

Findings

The tensile properties like tensile strength and tensile modulus of flax/hemp/sisal/Coir/Palmyra fiber-reinforced composites are majorly dependent on the chemical treatment and catalyst usage with fiber. The flexural properties of flax/hemp/sisal/coir/Palmyra are greatly dependent on fiber orientation and fiber length. Impact properties of flax/hemp/sisal/coir/Palmyra are depended on the fiber content, composition and orientation of various fibers.

Originality/value

This study is a review of various research work done on the natural fiber bio-composites exhibiting the factors to be considered for specific load conditions.

Details

World Journal of Engineering, vol. 20 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 27 September 2023

Jiongyi Yan, Emrah Demirci and Andrew Gleadall

Extrusion width, the width of printed filaments, affects multiple critical aspects in mechanical properties in material extrusion additive manufacturing: filament geometry…

Abstract

Purpose

Extrusion width, the width of printed filaments, affects multiple critical aspects in mechanical properties in material extrusion additive manufacturing: filament geometry, interlayer load-bearing bonded area and fibre orientation for fibre-reinforced composites. However, this study aims to understand the effects of extrusion width on 3D printed composites, which has never been studied systematically.

Design/methodology/approach

Four polymers with and without short-fibre reinforcement were 3D printed into single-filament-wide specimens. Tensile properties, mechanical anisotropy and fracture mechanisms were evaluated along the direction of extruded filaments (F) and normal to the interlayer bond (Z). Extrusion width, nozzle temperature and layer height were studied separately via single-variable control. The extrusion width was controlled by adjusting polymer flow in the manufacturing procedure (gcode), where optimisation can be achieved with software/structure design as opposed to hardware.

Findings

Increasing extrusion width caused a transition from brittle to ductile fracture, and greatly reduced directional anisotropy for strength and ductility. For all short fibre composites, increasing width led to an increase in strain-at-break and decreased strength and stiffness in the F direction. In the Z direction, increasing width led to increased strength and strain-at-break, and stiffness decreased for less ductile materials but increased for more ductile materials.

Originality/value

The transformable fracture reveals the important role of extrusion width in processing-structure-property correlation. This study reveals a new direction for future research and industrial practice in controlling anisotropy in additive manufacturing. Increasing extrusion width may be the simplest way to reduce anisotropy while improving printing time and quality in additive manufacturing.

Details

Rapid Prototyping Journal, vol. 30 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 28 April 2023

SVKSV Krishna Kiran Poodipeddi, Amarthya Singampalli, Lalith Sai Madhav Rayala and Surya Sudarsan Naveen Ravula

The purpose of this study is to follow up on the structural and fatigue analysis of car wheel rims with carbon fibre composites in order to ensure the vehicular safety. The wheel…

Abstract

Purpose

The purpose of this study is to follow up on the structural and fatigue analysis of car wheel rims with carbon fibre composites in order to ensure the vehicular safety. The wheel is an essential element of the vehicle suspension system that supports the static and dynamic loads encountered during its motion. The rim provides a firm base to hold the tire and supports the wheel, and it is also one of the load-bearing elements in the entire automobile as the car's weight and occupants' weight act upon it. The wheel rim should be strong enough to withstand the load with such a background, ensuring vehicle safety, comfort and performance. The dimensions, shape, structure and material of the rim are crucial factors for studying vehicle handling characteristics that demand automobile designers' concern.

Design/methodology/approach

In the present study, solid models of three different wheel rims, namely, R-1, R-2 and R-3, designed for three different cars, are modelled in SOLIDWORKS. Different carbon composite materials of polyetheretherketone (PEEK), namely, PEEK 90 HMF 40, PEEK 450 CA 30, PEEK 450 GL 40 and carbon fibre reinforced polymer-unidirectional (CFRP-UD) are used as rim materials for conducting the structural and fatigue analysis using ANSYS Workbench.

Findings

The results thus obtained in the analyses are used to identify the better carbon fibre composite material for the wheel rim such that it gives better structural properties and less fatigue. The R-3 model rim has shown better structural properties and less fatigue with PEEK 90 HMF 40 material.

Originality/value

The carbon composite materials used in this study have shown promissory results that can be used as an alternative for aluminium, steel and other regular materials.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 18 May 2023

Pradeep Kumar Mishra and Jagadesh T.

The tensile behavior of additively manufactured nylon-based carbon fiber-reinforced composites (CFRP) is an important criterion in aerospace and automobile structural design. So…

Abstract

Purpose

The tensile behavior of additively manufactured nylon-based carbon fiber-reinforced composites (CFRP) is an important criterion in aerospace and automobile structural design. So, this study aims to evaluate and validate the tensile stiffness of printed CFRP composites (low- and high-volume fraction fiber) using the volume average stiffness (VAS) model in consonance with experimental results. In specific, the tensile characterization of printed laminate composites is studied under the influence of raster orientations and process-induced defects.

Design/methodology/approach

CFRP composite laminates of low- and high-volume fraction carbon fiber of different raster orientations (0°, ± 45° and 0/90°) were fabricated using the continuous fiber 3D printing technique, and tensile characteristics of laminates were done on a universal testing machine with the crosshead speed of 2 mm/min. The induced fracture surface of laminates due to tensile load was examined using the scanning electron microscopy technique.

Findings

The VAS model can predict the tensile stiffness of printed CFRP composites with different raster orientations at an average prediction error of 5.94% and 10.58% for low- and high-volume fiber fractions, respectively. The unidirectional CFRP laminate composite with a high-volume fraction (50%) of carbon fiber showed 50.79% more tensile stiffness and 63.12% more tensile strength than the low-volume fraction (26%) unidirectional composite. Fiber pullout, fiber fracture and ply delamination are the major failure appearances observed in fracture surfaces of laminates under tensile load using scanning electron microscopy.

Originality/value

This investigation demonstrates the novel methodology to study specific tensile characteristics of low- and high-volume fraction 3D printed CFRP composite.

Details

Rapid Prototyping Journal, vol. 29 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 27 January 2023

Wei Chen, Qiuju Zhang, Ye Yuan, Xiaoyan Chen and Qinghao He

Continuous fiber reinforced thermoplastic composites (CFRTPCs) with great mechanical properties and green recyclability have been widely used in aerospace, transportation, sports…

Abstract

Purpose

Continuous fiber reinforced thermoplastic composites (CFRTPCs) with great mechanical properties and green recyclability have been widely used in aerospace, transportation, sports and leisure products, etc. However, the conventional molding technologies of CFRTPCs, with high cost and low efficiency, limit the property design and broad application of composite materials. The purpose of this paper is to study the effect of the 3D printing process on the integrated rapid manufacturing of CFRTPCs.

Design/methodology/approach

Tensile and flexural simulations and tests were performed on CFRTPCs. The effect of key process parameters on mechanical properties and molding qualities was evaluated individually and mutually to optimize the printing process. The micro morphologies of tensile and flexural breakages of the printed CFRTPCs were observed and analyzed to study the failure mechanism.

Findings

The results proved that the suitable process parameters for great printing qualities and mechanical properties included the glass hot bed with the microporous and solid glue coatings at 60°C and the nozzle temperature at 295°C. The best parameters of the nozzle temperature, layer thickness, feed rate and printing speed for the best elastic modulus and tensile strength were 285°C, 0.5 mm, 6.5r/min and 500 mm/min, respectively, whereas those for the smallest sectional porosity were 305°C, 0.6 mm, 5.5r/min and 550 mm/min, respectively.

Originality/value

This work promises a significant contribution to the improvement of the printing quality and mechanical properties of 3D printed CFRTPCs parts by the optimization of 3D printing processes.

Details

Rapid Prototyping Journal, vol. 29 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 23 June 2023

Sanna F. Siddiqui, Andre Archer, Dustin Fandetti and Carl McGee

The aerospace, energy and automotive industries have seen wide use of composite materials because of their excellent mechanical properties, along with the benefit of weight…

Abstract

Purpose

The aerospace, energy and automotive industries have seen wide use of composite materials because of their excellent mechanical properties, along with the benefit of weight reduction savings. As such, the purpose of this study is to provide an understanding of the mechanical performance of these materials under extreme operational conditions characteristic of in-service environments.

Design/methodology/approach

This study is novel in that it has evaluated the tensile performance and fracture response of additively manufactured continuous carbon fiber embedded in an onyx matrix (i.e. nylon with chopped carbon fiber) at cryogenic and room temperatures, for specimens manufactured with an angle between the specimen lying plane and the working build plane of 0°, 45° and 90°.

Findings

Research findings reveal enhanced tensile properties (i.e. ultimate tensile strength and modulus of elasticity) by the 0° (X) built specimens, as compared with the 45° (XZ45) and 90° (Z) built specimens at cryogenic temperature. A reduction in ductility is observed at cryogenic temperature for all build orientations. Fractographic analysis reveals the presence of fiber pullout/elongation, pores within the onyx matrix and chopped carbon fiber near fracture zone of the onyx matrix.

Research limitations/implications

Research findings present tensile properties (i.e. ultimate tensile strength, modulus of elasticity and elongation%) for three-dimensional (3D)-printed onyx with and without reinforcing continuous carbon fiber composites at cryogenic and room temperatures. Reinforcement of continuous carbon fibers and reduction to cryogenic temperatures appears to result, in general, in an increase in the tensile strength and modulus of elasticity, with a reduction in elongation% as compared with the onyx matrix tensile performance reported at room temperature. Fracture analysis reveals continuous carbon fiber pull out for onyx–carbon fiber samples tested at room temperature and cryogenic temperatures, suggesting weak onyx matrix–continuous carbon fiber adhesion.

Originality/value

To the best of the authors’ knowledge, this study is the first study to report on the cryogenic tensile properties and fracture response exhibited by 3D-printed onyx–continuous carbon fiber composites. Evaluating the viability of common commercial 3D printing techniques in producing composite parts to withstand cryogenic temperatures is of critical import, for aerospace applications.

Details

Rapid Prototyping Journal, vol. 29 no. 9
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 5 June 2023

Huiyi Xu, Zhiming Gao, Yang Yang and Wenbin Hu

The purpose of this study is to ensure the safe use of carbon fiber composite pressure vessels in the nuclear industry environment.

Abstract

Purpose

The purpose of this study is to ensure the safe use of carbon fiber composite pressure vessels in the nuclear industry environment.

Design/methodology/approach

This study investigated the degradation behaviors of carbon fiber reinforced composite (CFRP) using the specific corrosive media HF solution, with a focus on the damage to the surface epoxy layer. The degradation behaviors of CFRP in HF solution were examined by electrochemical methods and surface characterization, using HCl, NaCl and NaF solution for comparison.

Findings

The results showed that the specimen in HF solution will have a value of |Z|0.01 Hz one order of magnitude lower, a substantially lower contact angle, more breakage of the surface epoxy and the stronger O─H peak and weaker C─O─C peak in the Fourier transform infrared spectrum, indicating severe hydrolytic damage to the surface epoxy.

Originality/value

The work focuses on the degradation damage to CFRP surface epoxy by specific corrosive media HF.

Details

Anti-Corrosion Methods and Materials, vol. 70 no. 4
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 26 March 2024

Vishal Mishra, Ch Kapil Ror, Sushant Negi and Simanchal Kar

This study aims to present an experimental approach to develop a high-strength 3D-printed recycled polymer composite reinforced with continuous metal fiber.

53

Abstract

Purpose

This study aims to present an experimental approach to develop a high-strength 3D-printed recycled polymer composite reinforced with continuous metal fiber.

Design/methodology/approach

The continuous metal fiber composite was 3D printed using recycled and virgin acrylonitrile butadiene styrene-blended filament (RABS-B) in the ratio of 60:40 and postused continuous brass wire (CBW). The 3D printing was done using an in-nozzle impregnation technique using an FFF printer installed with a self-modified nozzle. The tensile and single-edge notch bend (SENB) test samples are fabricated to evaluate the tensile and fracture toughness properties compared with VABS and RABS-B samples.

Findings

The tensile and SENB tests revealed that RABS-B/CBW composite 3D printed with 0.7 mm layer spacing exhibited a notable improvement in Young’s modulus, ultimate tensile strength, elongation at maximum load and fracture toughness by 51.47%, 18.67% and 107.3% and 22.75% compared to VABS, respectively.

Social implications

This novel approach of integrating CBW with recycled thermoplastic represents a significant leap forward in material science, delivering superior strength and unlocking the potential for advanced, sustainable composites in demanding engineering fields.

Originality/value

Limited research has been conducted on the in-nozzle impregnation technique for 3D printing metal fiber-reinforced recycled thermoplastic composites. Adopting this method holds the potential to create durable and high-strength sustainable composites suitable for engineering applications, thereby diminishing dependence on virgin materials.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 10 November 2022

Juan Esteban Aponte Gonzalez, William Jordan Wright, Raden Gustinvil and Emrah Celik

Direct ink writing (DIW) is a robust additive manufacturing technology for the fabrication of fiber-reinforced thermoset composites. However, this technique is currently limited…

Abstract

Purpose

Direct ink writing (DIW) is a robust additive manufacturing technology for the fabrication of fiber-reinforced thermoset composites. However, this technique is currently limited to low design complexity and minimal heights. This study aims to investigate the feasibility of UV-assisted DIW of composites to enhance the green-part strength of the printed inks and resolve the complexity and the height limitations of DIW technology.

Design/methodology/approach

The experimental approach involved the preparation of the thermoset inks that are composed of nanoclay, epoxy, photopolymer and glass fiber reinforcement. Composite specimens were fabricated in complex geometries from these ink feedstocks using UV-assisted, hybrid 3D-printing technology. Fabricated specimens were characterized using optical microscopy, three-point bending mechanical tests and numerical simulations.

Findings

The introduced hybrid, UV-assisted 3D-printing technology allowed the fabrication of tall and overhanging thermoset composite structures up to 30% glass fiber reinforcement without sagging during or after printing. Glass fiber reinforcement tremendously enhanced the mechanical performance of the composites. UV-curable resin addition led to a reduction in strength (approximately 15%) compared to composites fabricated without UV resin. However, this reduction can be eliminated by increasing the glass fiber content within the hybrid thermoset composite. Numerical simulations indicate that the fiber orientation significantly affects the mechanical performance of the printed composites.

Originality/value

This study showed that the fabrication of high-performing thermoset composites in complex geometries was possible via hybrid DIW technology. This new technology will tremendously expand the application envelope of the additively manufactured thermoset composites and the fabrication of large composite structures with high mechanical performance and dimensional freedom will benefit various engineering fields including the fields of aerospace, automotive and marine engineering.

Details

Rapid Prototyping Journal, vol. 29 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 189