Search results

1 – 10 of 69
Article
Publication date: 28 April 2023

SVKSV Krishna Kiran Poodipeddi, Amarthya Singampalli, Lalith Sai Madhav Rayala and Surya Sudarsan Naveen Ravula

The purpose of this study is to follow up on the structural and fatigue analysis of car wheel rims with carbon fibre composites in order to ensure the vehicular safety. The wheel…

Abstract

Purpose

The purpose of this study is to follow up on the structural and fatigue analysis of car wheel rims with carbon fibre composites in order to ensure the vehicular safety. The wheel is an essential element of the vehicle suspension system that supports the static and dynamic loads encountered during its motion. The rim provides a firm base to hold the tire and supports the wheel, and it is also one of the load-bearing elements in the entire automobile as the car's weight and occupants' weight act upon it. The wheel rim should be strong enough to withstand the load with such a background, ensuring vehicle safety, comfort and performance. The dimensions, shape, structure and material of the rim are crucial factors for studying vehicle handling characteristics that demand automobile designers' concern.

Design/methodology/approach

In the present study, solid models of three different wheel rims, namely, R-1, R-2 and R-3, designed for three different cars, are modelled in SOLIDWORKS. Different carbon composite materials of polyetheretherketone (PEEK), namely, PEEK 90 HMF 40, PEEK 450 CA 30, PEEK 450 GL 40 and carbon fibre reinforced polymer-unidirectional (CFRP-UD) are used as rim materials for conducting the structural and fatigue analysis using ANSYS Workbench.

Findings

The results thus obtained in the analyses are used to identify the better carbon fibre composite material for the wheel rim such that it gives better structural properties and less fatigue. The R-3 model rim has shown better structural properties and less fatigue with PEEK 90 HMF 40 material.

Originality/value

The carbon composite materials used in this study have shown promissory results that can be used as an alternative for aluminium, steel and other regular materials.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 15 September 2023

Payman Sahbah Ahmed

Epoxy resins are widely used in a variety of engineering applications, including composite wind turbine blades used in the renewable energy industry, highly complex structural…

Abstract

Purpose

Epoxy resins are widely used in a variety of engineering applications, including composite wind turbine blades used in the renewable energy industry, highly complex structural components for aircraft, paints, coatings, industrial tooling, biomedical systems, adhesives, electronics and automotive. Epoxies' low fracture toughness is one of the key obstacles preventing its adoption in a wider range of applications. To address epoxy's low fracture toughness, this paper aims to examine the roles of intra-ply hybridization and nano reinforcing.

Design/methodology/approach

This paper investigates the role of intra-ply hybridization of glass-carbon woven fibers and adding 0.8 wt.% of multiwall carbon nanotube (MWCNT) nano reinforcement to overcome the low fracture toughness of epoxy. A bending test is used to calculate the composites elastic parameters, and a notched sample three-point bending test is used to show crack behavior in addition to using materials characterization methods to reveal the effect of the MWCNT on structure, bonding, glass transition temperature (Tg) and dispersion of MWCNT in the matrix. Furthermore, this paper suggests using the finite element method to overcome the difficulty in calculating the crack extension.

Findings

Intra-ply hybridization and MWCNT reinforcement decrease the crack extension of epoxy with time. The inclusion of high-strength carbon fiber increased the fracture toughness of glass composite. Furthermore, the existence of MWCNT in the surrounding area of the notch in epoxy composites hinders crack propagation and provides stiffness at the interface by bridging the crack and eventually enhancing its fracture toughness.

Originality/value

Studying the role of intra-ply hybridization of glass-carbon woven fibers and adding 0.8 wt.% of MWCNT nano reinforcement to overcome the low fracture toughness of epoxy. Additionally, this research recommends using the finite element method to overcome the challenge of computing the crack extension.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 22 August 2022

Long Liu and Songqiang Wan

To make full use of the tensile strength of near surface mounting (NSM) pasted carbon fiber reinforced plastics (CFRP) strips and further increase the flexural bearing capacity…

89

Abstract

Purpose

To make full use of the tensile strength of near surface mounting (NSM) pasted carbon fiber reinforced plastics (CFRP) strips and further increase the flexural bearing capacity and flexibility of reinforced concrete (RC) beams, a new composite reinforcement method using ultra-high performance concrete (UHPC) layer in the compression zone of RC beams is submitted based on embedding CFRP strips in the tension zone of RC beams. This paper aims to discuss the aforementioned points.

Design/methodology/approach

The experimental beam was simulated by ABAQUS, and compared with the experimental results, the validity of the finite element model was verified. On this basis, the reinforced RC beam is used as the control beam, and parameters such as the CFRP strip number, UHPC layer thickness, steel bar ratio and concrete strength are studied through the verified model. In addition, the numerical calculation results of yield strength, ultimate strength, failure deflection and flexibility are also given.

Findings

The flexural bearing capacity of RC beams supported by the new method is 132.3% higher than that of unreinforced beams, and 7.8% higher than that of RC beams supported only with CFRP strips. The deflection flexibility coefficient of the new reinforced RC beam is 8.06, which is higher than that of the unreinforced beam and the reinforced concrete beam with only CFRP strips embedded in the tension zone.

Originality/value

In this paper, a new reinforcement method is submitted, and the effects of various parameters on the ultimate bearing capacity and flexibility of reinforced RC beams are analyzed by the finite element numerical simulation. Finally, the effectiveness of the new method is verified by the analytical formula.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 11 January 2024

Ahmed Ashteyat, Ala Taleb Obaidat, Yasmeen Taleb Obeidat and Ahmad Bani Awwad

The paper aims to introduces an experimental work to investigate the torsional behavior of reinforced concrete (RC) beams strengthened by near-surface mounted (NSM) carbon…

18

Abstract

Purpose

The paper aims to introduces an experimental work to investigate the torsional behavior of reinforced concrete (RC) beams strengthened by near-surface mounted (NSM) carbon fiber-reinforced polymer (CFRP) ropes.

Design/methodology/approach

In this research, nine rectangular RC beams of 250 mm × 300 mm cross-section and 1,600 mm in length were constructed and tested considering the studied parameters. These parameters include the length of the CFRP rope, the orientation of the CFRP rope, the arrangement of longitudinal and the scheme of NSM-CFRP ropes.

Findings

In comparison to control specimens, the results demonstrate a considerable improvement in the torsional response of RC beams strengthened with the CFRP rope. Additionally, specimens strengthened with 90° vertical ropes increase torsional moment capacity more efficiently than specimens strengthened with 45° inclined ropes since the stress concentration leads to premature debonding of the CFRP rope. Whereas RC beams' ability to withstand torsional moments is reduced as the distance between reinforcing CFRP ropes is increased. According to test results, adding CFRP ropes to RC beams' bottoms had a slightly positive impact on torsional response.

Originality/value

This paper fulfills an identified need to study how the using of the CFRP rope is effective in strengthening RC beam subjected to torsion moment.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 31 October 2022

Yasmeen Taleb Obaidat, Wasim Barham and Rawan Abu libdeh

The main aim of this study is to examine the behavior of reinforced concrete short columns strengthened using longitudinal near surface mounted (NSM)-carbon fiber reinforced…

Abstract

Purpose

The main aim of this study is to examine the behavior of reinforced concrete short columns strengthened using longitudinal near surface mounted (NSM)-carbon fiber reinforced polymer (CFRP) strips.

Design/methodology/approach

A full 3D-finite element (FE) model was developed using ABAQUS in order to conduct the analysis. The model is first validated based on experimental data available in the literature, and then the effect of concrete compressive strength, number of CFRP strips that are used and the spacing between them were taken in consideration for both concentric and eccentric loading cases. The parametric study specimens were divided into three groups. The first group consisted of unstrengthened columns and served as control specimens. The second group consisted of columns strengthened by longitudinal CFRP strips at two opposite column faces.

Findings

The results of this study are used to develop interaction diagrams for CFRP-strengthened short columns and to develop best-fit equations to estimate the nominal axial load and moment capacities for these strengthened columns. The results showed that the specimens that were strengthened using more longitudinal CFRP strips showed a significant increase in axial load capacity and a significant improvement in the interaction diagram, especially at large load eccentricity values. This result can be justified by the fact that longitudinal strips effectively resist the bending moment that is generated due to eccentric loading. Generally, the process of strengthening using longitudinal strips only has a reasonable effect and it can be typically considered an excellent choice considering the economic aspect when the budget of strengthening is limited.

Originality/value

This research aims at studying the performance of strengthened rectangular reinforced concrete short columns with CFRP strips using FE method, developing interaction diagrams of strengthened columns in order to investigate the effect of different parameters such as compressive strength (20, 30 and 40 MPa), number of CFRP strips (1, 2, 3 and 4) and the spacing between CFRP strips in terms of the ratio of CFRP center point distance to column outside dimension ratio (0.60, 0.70 and 0.80) on the behavior of strengthened RC columns and improving empirical formulas to predict the nominal axial load and moment capacities of strengthened RC columns. These parameters that directly affect short column load carrying capacity are presented in ACI-318 (2014).

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 29 February 2024

Yasser M. Mater, Ahmed A. Elansary and Hany A. Abdalla

The use of recycled coarse aggregate in concrete structures promotes environmental sustainability; however, performance of these structures might be negatively impacted when it is…

Abstract

Purpose

The use of recycled coarse aggregate in concrete structures promotes environmental sustainability; however, performance of these structures might be negatively impacted when it is used as a replacement to traditional aggregate. This paper aims to simulate recycled concrete beams strengthened with carbon fiber-reinforced polymer (CFRP), to advance the modeling and use of recycled concrete structures.

Design/methodology/approach

To investigate the performance of beams with recycled coarse aggregate concrete (RCAC), finite element models (FEMs) were developed to simulate 12 preloaded RCAC beams, strengthened with two CFRP strengthening schemes. Details of the modeling are provided including the material models, boundary conditions, applied loads, analysis solver, mesh analysis and computational efficiency.

Findings

Using FEM, a parametric study was carried out to assess the influence of CFRP thickness on the strengthening efficiency. The FEM provided results in good agreement with those from the experiments with differences and standard deviation not exceeding 11.1% and 3.1%, respectively. It was found that increasing the CFRP laminate thickness improved the load-carrying capacity of the strengthened beams.

Originality/value

The developed models simulate the preloading and loading up to failure with/without CFRP strengthening for the investigated beams. Moreover, the models were validated against the experimental results of 12 beams in terms of crack pattern as well as load, deflection and strain.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 9 January 2024

Yunfei Zou

This study aims to enhance the understanding of fiber-reinforced polymer (FRP) applications in partially confined concrete, with a specific focus on improving economic value and…

Abstract

Purpose

This study aims to enhance the understanding of fiber-reinforced polymer (FRP) applications in partially confined concrete, with a specific focus on improving economic value and load-bearing capacity. The research addresses the need for a more comprehensive analysis of non-uniform vertical strain responses and precise stress–strain models for FRP partially confined concrete.

Design/methodology/approach

DIC and strain gauges were employed to gather data during axial compression tests on FRP partially confined concrete specimens. Finite element analysis using ABAQUS was utilized to model partial confinement concrete with various constraint area ratios, ranging from 0 to 1. Experimental findings and simulation results were compared to refine and validate the stress–strain model.

Findings

The experimental results revealed that specimens exhibited strain responses characterized by either hardening or softening in both vertical and horizontal directions. The finite element analysis accurately reflected the relationship between surface constraint forces and axial strains in the x, y and z axes under different constraint area ratios. A proposed stress–strain model demonstrated high predictive accuracy for FRP partially confined concrete columns.

Practical implications

The stress–strain curves of partially confined concrete, based on Teng's foundation model for fully confined stress–strain behavior, exhibit a high level of predictive accuracy. These findings enhance the understanding of the mechanical behavior of partially confined concrete specimens, which is crucial for designing and assessing FRP confined concrete structures.

Originality/value

This research introduces innovative insights into the superior convenience and efficiency of partial wrapping strategies in the rehabilitation of beam-column joints, surpassing traditional full confinement methods. The study contributes methodological innovation by refining stress–strain models specifically for partially confined concrete, addressing the limitations of existing models. The combination of experimental and simulated assessments using DIC and FEM technologies provides robust empirical evidence, advancing the understanding and optimization of FRP-concrete structure performance. This work holds significance for the broader field of concrete structure reinforcement.

Details

International Journal of Structural Integrity, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 5 March 2024

Maria Ghannoum, Joseph Assaad, Michel Daaboul and Abdulkader El-Mir

The use of waste polyethylene terephthalate (PET) plastics derived from shredded bottles in concrete is not formalized yet, especially in reinforced members such as beams and…

Abstract

Purpose

The use of waste polyethylene terephthalate (PET) plastics derived from shredded bottles in concrete is not formalized yet, especially in reinforced members such as beams and columns. The disposal of plastic wastes in concrete is a viable alternative to manage those wastes while minimizing the environmental impacts associated to recycling, carbon dioxide emissions and energy consumption.

Design/methodology/approach

This paper evaluates the suitability of 2D deterministic and stochastic finite element (FE) modeling to predict the shear strength behavior of reinforced concrete (RC) beams without stirrups. Different concrete mixtures prepared with 1.5%–4.5% PET additions, by volume, are investigated.

Findings

Test results showed that the deterministic and stochastic FE approaches are accurate to assess the maximum load of RC beams at failure and corresponding midspan deflection. However, the crack patterns observed experimentally during the different stages of loading can only be reproduced using the stochastic FE approach. This later method accounts for the concrete heterogeneity due to PET additions, allowing a statistical simulation of the effect of mechanical properties (i.e. compressive strength, tensile strength and Young’s modulus) on the output FE parameters.

Originality/value

Data presented in this paper can be of interest to civil and structural engineers, aiming to predict the failure mechanisms of RC beams containing plastic wastes, while minimizing the experimental time and resources needed to estimate the variability effect of concrete properties on the performance of such structures.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 16 January 2024

Bashir H. Osman

Recently, the repairing of reinforced concrete (RC) structures attracted great research attentions, but the research interests were mainly concentrated on common repairing types…

Abstract

Purpose

Recently, the repairing of reinforced concrete (RC) structures attracted great research attentions, but the research interests were mainly concentrated on common repairing types. To this end, in this paper, a repairing of pre-loaded RC beams strengthened by aramid reinforcement polymers (AFRP) is presented. Furthermore, the purpose of this paper is to study the behavior of pre-loaded RC Deep beams under sustained load. The AFRP has many advantages such as controlling stresses distribution around the openings, controlling failure modes, and enhancing the structural capacity of pre-cracked RC beams.

Design/methodology/approach

Four specimens were experimentally tested: one specimen without strengthening, which is considered as control specimen, one strengthened specimen using AFRP without pre-cracking and two specimens subjected to pre-cracking load before prior to AFRP application. Furthermore, after validation of experimental data by using ANSYS software, a parametric study was conducted to investigate the effect of pre-damage level on shear capacity of RC beams. For pre-cracked beams, loading was first applied until the cracking stage, followed by specimen repairing with epoxy injection, and then the specimens were loaded again until failure point.

Findings

The result showed that pre-damage level and AFRP strengthening have great influence on the ultimate strength and failure mode. In addition, the results obtained from experimental tests were compared with those from numerical validation with ANSYS and showed good agreement.

Originality/value

Based on ACI guidelines, an analytical equation for calculating the shear strength of strengthened RC beams with openings subjected to pre-damage was then proposed, and the calculated results were compared with those from the tests, with differences not exceeding 10%.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Open Access
Article
Publication date: 19 March 2024

Zhenlong Peng, Aowei Han, Chenlin Wang, Hongru Jin and Xiangyu Zhang

Unconventional machining processes, particularly ultrasonic vibration cutting (UVC), can overcome such technical bottlenecks. However, the precise mechanism through which UVC…

Abstract

Purpose

Unconventional machining processes, particularly ultrasonic vibration cutting (UVC), can overcome such technical bottlenecks. However, the precise mechanism through which UVC affects the in-service functional performance of advanced aerospace materials remains obscure. This limits their industrial application and requires a deeper understanding.

Design/methodology/approach

The surface integrity and in-service functional performance of advanced aerospace materials are important guarantees for safety and stability in the aerospace industry. For advanced aerospace materials, which are difficult-to-machine, conventional machining processes cannot meet the requirements of high in-service functional performance owing to rapid tool wear, low processing efficiency and high cutting forces and temperatures in the cutting area during machining.

Findings

To address this literature gap, this study is focused on the quantitative evaluation of the in-service functional performance (fatigue performance, wear resistance and corrosion resistance) of advanced aerospace materials. First, the characteristics and usage background of advanced aerospace materials are elaborated in detail. Second, the improved effect of UVC on in-service functional performance is summarized. We have also explored the unique advantages of UVC during the processing of advanced aerospace materials. Finally, in response to some of the limitations of UVC, future development directions are proposed, including improvements in ultrasound systems, upgrades in ultrasound processing objects and theoretical breakthroughs in in-service functional performance.

Originality/value

This study provides insights into the optimization of machining processes to improve the in-service functional performance of advanced aviation materials, particularly the use of UVC and its unique process advantages.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

1 – 10 of 69