Search results

1 – 10 of 303
Open Access
Article
Publication date: 29 November 2022

David Bricín, Filip Véle, Zdeněk Jansa, Zbyněk Špirit, Jakub Kotous and Dana Kubátová

The purpose of this study is to verify how the carbon doping of the WC-Co cemented carbide (CC) affected their structure before their processing by hot isostatic pressing (HIP…

Abstract

Purpose

The purpose of this study is to verify how the carbon doping of the WC-Co cemented carbide (CC) affected their structure before their processing by hot isostatic pressing (HIP) technology.

Design/methodology/approach

The samples for this experiment were fabricated by selective laser melting technology (SLM) using a YAG fiber laser with a power of P = 40 W and a scanning speed of 83 mm/s. The subsequent carbon doping process was performed in a chamber furnace at 900 0 C for 1, 4 and 12 h. The HIP was performed at 1,390°C and pressures of 40 MPa, 80 MPa and 120 MPa. The changes induced in the structures were evaluated using X-ray diffraction and various microscopic methods.

Findings

X-ray diffraction analysis showed that the structure of the samples after SLM consisted of WC, W2C, Co4W2C and Co phases. As a result of the increase in the carbon content in the structure of the samples, the transition carbide W2C and structural phase Co4W2C decayed. Their decay was manifested by the coarsening of the minor alpha phase (WC), which occurred both during the carburizing process and during the subsequent processing using HIP. In the samples in which the structure was carburized prior to HIP, only the structural phases WC and Co were observed in most cases.

Originality/value

The results confirm that it is possible to increase the homogeneity of the CC structure and thus its applicability in practice by additional carburization of the sample structure with subsequent processing by HIP technology.

Details

Rapid Prototyping Journal, vol. 28 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Content available
Article
Publication date: 1 April 2000

163

Abstract

Details

Aircraft Engineering and Aerospace Technology, vol. 72 no. 2
Type: Research Article
ISSN: 0002-2667

Keywords

Content available
Article
Publication date: 1 October 2000

124

Abstract

Details

Aircraft Engineering and Aerospace Technology, vol. 72 no. 5
Type: Research Article
ISSN: 0002-2667

Keywords

Content available
Article
Publication date: 1 February 2001

87

Abstract

Details

Aircraft Engineering and Aerospace Technology, vol. 73 no. 1
Type: Research Article
ISSN: 0002-2667

Keywords

Content available
Article
Publication date: 1 April 2004

85

Abstract

Details

Industrial Lubrication and Tribology, vol. 56 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Content available
Article
Publication date: 1 August 2000

120

Abstract

Details

Aircraft Engineering and Aerospace Technology, vol. 72 no. 4
Type: Research Article
ISSN: 0002-2667

Keywords

Open Access
Article
Publication date: 6 June 2023

Jiyong Jin

In order to develop high-strength, high-toughness and high-wear-resistance rails suitable for the development and application of heavy-haul railways.

222

Abstract

Purpose

In order to develop high-strength, high-toughness and high-wear-resistance rails suitable for the development and application of heavy-haul railways.

Design/methodology/approach

Based on the trial production of 60 kg·m−1 bainite rails, the Zeiss inverted optical microscope, transmission electron microscope and static hydraulic universal tester were used to test the microstructure and property of rail base metal and welded joints. Meanwhile, a trial laying of rails, wing rails of frogs and switch rails for turnouts was performed to systematically analyze their strength, toughness and wear resistance.

Findings

The results show that the base metal of 60 kg·m−1 bainite rail is of a uniform microstructure, with a carbide-free bainite matrix, a few of stable residual austenite and M/A islands, and it features high hardness, good wear resistance and good strength-toughness balance. The welded joint is of a uniform microstructure and has good properties.

Originality/value

A bainite rail, laid in a curve section of heavy-haul railway is able to serve for 48 months with a gross traffic tonnage of nearly 600 million tons, whose service life is more than one time longer than that of pearlite rail; the service life of the wing rail of frog and the switch rail for turnout with 60 kg·m−1 bainite rails is 3–4 times longer than that with U75V rails, and no serious damage occurs. The bainite rails also have strong peeling and spalling resistance.

Details

Railway Sciences, vol. 2 no. 2
Type: Research Article
ISSN: 2755-0907

Keywords

Content available
Article
Publication date: 1 February 1999

123

Abstract

Details

Aircraft Engineering and Aerospace Technology, vol. 71 no. 1
Type: Research Article
ISSN: 0002-2667

Keywords

Content available
Article
Publication date: 1 August 2001

94

Abstract

Details

Aircraft Engineering and Aerospace Technology, vol. 73 no. 4
Type: Research Article
ISSN: 0002-2667

Keywords

Content available
Article
Publication date: 1 June 2002

181

Abstract

Details

Aircraft Engineering and Aerospace Technology, vol. 74 no. 3
Type: Research Article
ISSN: 0002-2667

Keywords

1 – 10 of 303