Search results

1 – 10 of 371
Article
Publication date: 15 April 2020

Guanzheng Wu, Siming Li, Jiayu Hu, Manchen Dong, Ke Dong, Xiuliang Hou and Xueliang Xiao

This paper aims to study the working principle of the capacitive pressure sensor and explore the distribution of pressure acting on the surface of the capacitor. Herein, a kind of…

Abstract

Purpose

This paper aims to study the working principle of the capacitive pressure sensor and explore the distribution of pressure acting on the surface of the capacitor. Herein, a kind of high sensitivity capacitive pressure sensor was prepared by overlaying carbon fibers (CFs) on the surfaces of the thermoplastic elastomer (TPE), the TPE with high elasticity is a dielectric elastomer for the sensor and the CFs with excellent electrical conductivity were designed as the conductor.

Design/methodology/approach

Due to the excellent mechanical properties and electrical conductivity of CFs, it was designed as the conductor layer for the TPE/CFs capacitive pressure sensor via laminating CFs on the surfaces of the columnar TPE. Then, a ‘#' type structure of the capacitive pressure sensor was designed and fabricated.

Findings

The ‘#' type of capacitive pressure sensor of TPE/CFs composite was obtained in high sensitivity with a gauge factor of 2.77. Furthermore, the change of gauge factor values of the sensor under 10 per cent of applied strains was repeated for 1,000 cycles, indicating its outstanding sensing stability. Moreover, the ‘#' type capacitive pressure sensor of TPE/CFs was consisted of several capacitor arrays via laminating CFs, which could detect the distribution of pressure.

Research limitations/implications

The TPE/CFs capacitive pressure sensor was easily fabricated with high sensitivity and quick responsiveness, which is desirably applied in wearable electronics, robots, medical devices, etc.

Originality/value

The outcome of this study will help to fabricate capacitive pressure sensors with high sensitivity and outstanding sensing stability.

Details

Pigment & Resin Technology, vol. 50 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 6 July 2020

Igor S. Nadezhdin and Aleksey G. Goryunov

Differential pressure is an important technological parameter, one urgent task of which is control and measurement. To date, the lion’s share of research in this area has focused…

Abstract

Purpose

Differential pressure is an important technological parameter, one urgent task of which is control and measurement. To date, the lion’s share of research in this area has focused on the development and improvement of differential pressure sensors. The purpose of this paper is to develop a smart differential pressure sensor with improved operational and metrological characteristics.

Design/methodology/approach

The operating principle of the developed pressure sensor is based on the capacitive measurement principle. The measuring unit of the developed pressure sensor is based on a differential capacitive sensitive element. Programmable system-on-chip (PSoC) technology has been used to develop the electronics unit.

Findings

The use of a differential capacitive sensitive element allows the unit to compensate for the influence of interference (for example, temperature) on the measurement result. With the use of PSoC technology, it is also possible to increase the noise immunity of the developed smart differential pressure sensor and provide an unparalleled combination of flexibility and integration of analog and digital functionality.

Originality/value

The use of PSoC technology in the developed smart differential pressure sensor has many indisputable advantages, as the size of the entire circuit can be minimized. As a result, the circuit has improved noise immunity. Accordingly, the procedure for debugging and changing the software of the electronics unit is simplified. These features make development and manufacturing cost effective.

Details

Sensor Review, vol. 40 no. 5
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 2 August 2011

Marina Santo Zarnik, Darko Belavič and Srečko Maček

The purpose of this paper is to consider a capacitive pressure sensor fabricated using low‐temperature cofired ceramic (LTCC) materials and technology as a candidate for an…

Abstract

Purpose

The purpose of this paper is to consider a capacitive pressure sensor fabricated using low‐temperature cofired ceramic (LTCC) materials and technology as a candidate for an energy‐autonomous sensor application. Designing the 3D capacitive sensor structure, with the cofired thick‐film electrodes inside the narrow air gap in the LTCC substrate, was a challenging task, particularly due to the presence of the parasitic elements influencing the sensor's characteristics.

Design/methodology/approach

In this work, different design variants for the thick‐film electrodes of the capacitive sensing structure were studied and compared. The test sensors were designed for the pressure range 0‐10 kPa and manufactured with readout electronics based on a capacitance‐to‐digital conversion.

Findings

The typical sensitivity obtained was 4 fF/kPa, and the temperature coefficient of the sensitivity was 0.03%/°C. The design variant with the guard‐ring electrode showed the best rms resolution of 50 Pa. One drawback of the application could be the sensitivity to atmospheric humidity and the influence of the different media.

Originality/value

This paper focuses on the design of a capacitive gas‐pressure sensor in a 3D LTCC structure. The present study provides a good basis for further optimisation of the design of the cofired electrodes in the capacitive sensing structure.

Details

Microelectronics International, vol. 28 no. 3
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 30 January 2007

Russell Cork

The paper aims to present an innovative method for imaging the pressure distribution between two interface surfaces. The physical principles behind the design of the pressure…

Abstract

Purpose

The paper aims to present an innovative method for imaging the pressure distribution between two interface surfaces. The physical principles behind the design of the pressure imaging system are explained, and some case studies involving the use of this technology in diverse applications are described.

Design/methodology/approach

The XSENSOR pressure sensor is comprised of a matrix of capacitive sensing elements. Pressure applied to the surface of the sensing element causes a change in capacitance that is correlated to a change in pressure. Proprietary Windows based software compensates for sensor non‐linearity, hysteresis, and creep over time, resulting in enhanced accuracy.

Findings

XSENSOR's capacitive based pressure imaging sensors can graphically display pressure distributions in real time between virtually any two surfaces in contact. The sensor element is accurate, thin, flexible, and robust. These physical characteristics minimize any artificial influences created by the presence of the sensor during data collection.

Practical implications

Pressure imaging technology can be used in industrial and engineering environments for product design and verification, process control, or quality assurance.

Originality/value

This paper will be useful to the engineer or business manager interested in applying sensor technology to solve engineering or design problems.

Details

Sensor Review, vol. 27 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 1 December 2005

A. Arshak, K. Arshak, G. Lyons, D. Waldron, D. Morris, O. Korostynska and E. Jafer

Telemetry capsules have existed since the 1950s and were used to measure temperature, pH or pressure inside the gastrointestinal (GI) tract. It was hoped that these capsules would…

1444

Abstract

Purpose

Telemetry capsules have existed since the 1950s and were used to measure temperature, pH or pressure inside the gastrointestinal (GI) tract. It was hoped that these capsules would replace invasive techniques in the diagnosis of function disorders in the GI tract. However, problems such as signal loss and uncertainty of the pills position limited their use in a clinical setting. In this paper, a review of the capabilities of microelectromechanical systems (MEMS) for the fabrication of a wireless pressure sensor microsystem is presented.

Design/methodology/approach

The circuit requirements and methods of data transfer are examined. The available fabrication methods for MEMS sensors are also discussed and examples of wireless sensors are given. Finally, the drawbacks of using this technology are examined.

Findings

MEMS for use in wireless monitoring of pressure in the GI tract have been investigated. It has been shown that capacitive pressure sensors are particularly suitable for this purpose. Sensors fabricated for wireless continuous monitoring of pressure have been reviewed. Great progress, especially using surface micromachining, has been made in recent years. However, despite these advances, some challenges remain.

Originality/value

Provides a review of the capabilities of MEMS.

Details

Sensor Review, vol. 25 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 1 January 2008

K. Arshak, A. Arshak, E. Jafer, D. Waldern and J. Harris

To develop a wireless sensor micro‐systems containing all the components of data acquisition system, such as sensors, signal‐conditioning circuits, analog‐digital converter…

2852

Abstract

Purpose

To develop a wireless sensor micro‐systems containing all the components of data acquisition system, such as sensors, signal‐conditioning circuits, analog‐digital converter, embedded microcontroller unit (MCU), and RF communication modules. This has now become the focus of attention in many biomedical applications.

Design/methodology/approach

The system prototype consists of miniature FSK transceiver integrated with MCU in one small package, chip antenna, and capacitive interface circuitry based on Delta‐sigma modulator. At the base station side, an FSK receiver/transmitter is connected to another MCU unit, which send the received data or received instructions from a PC through a graphical user interface GUI. Industrial, scientific and medical band RF (433 MHz) was used to achieve half duplex communication between the two sides. A digital filtering has been used in the capacitive interface to reduce noise effects forming capacitance to digital converter. All the modules of the mixed signal system are integrated in a printed circuit board of size 22.46 × 20.168 mm.

Findings

An innovation circuits and system techniques for building advanced smart medical devices have been discussed. Low‐power consumption and high reliability are among the main criteria that must be given priority when designing such wirelessly powered microsystems. Switched capacitors readout circuits have been found to be suitable for pressure sensing low‐power applications.

Research limitations/implications

The presented wireless prototype needs a second phase of development that will lead to a further reduction in both size and power consumption. Currently, the main limitation of the RF system is the number of working hours according to the selected battery.

Practical implications

The developed system was found to be useful in terms of measuring pressure and temperature in a system of either slow or fast physical change. It would be a good idea to explore the system performance in human or animal trials.

Originality/value

This paper fulfils useful information for capacitive interface circuitries and presents a new short‐range wireless system that has different design features.

Details

Microelectronics International, vol. 25 no. 1
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 19 September 2016

Jianli Cui, Junping Duan, Binzhen Zhang and Xueli Nan

This paper aims to provide a fabrication and measurement of a highly stretchable pressure sensor with a “V-type” array microelectrode on a grating PDMS substrate.

Abstract

Purpose

This paper aims to provide a fabrication and measurement of a highly stretchable pressure sensor with a “V-type” array microelectrode on a grating PDMS substrate.

Design/methodology/approach

First, the “V-type” array structure on the silicon wafer was fabricated by the MEMS technology, and the fabrication process included ultra-violet lithography and silicon etching. The “V-type” array structure on the master mold was then replicated into polycarbonate, which served as an intermediate, negative mold, using a conventional nanoimprint lithography technique. The negative mold was subsequently used in the PDMS molding process to produce PDMS “V-type” array structures with the same structures as the master mold. An Ag film was coated on the PDMS “V-type” array structure surface by the magnetron sputtering process to obtain PDMS “V-type” array microelectrodes. Finally, a PDMS prepolymer was prepared using a Sylgard184 curing agent with a weight ratio of a 20:1 and applied to the cavity at the middle of the two-layer PDMS “V-type” array microelectrode template to complete hot-press bonding, and a pressure sensor was realized.

Findings

The experimental results showed that the PDMS “V-type” array microelectrode has high stretchability of 65 per cent, temperature stability of 0.0248, humidity stability of 0.000204, bending stability and cycle stability. Capacitive pressure sensors with a “V-type” array microelectrode exhibit ideal initial capacitance (111.45 pF), good pressure sensitivity of 0.1143 MPa-1 (0-0.35 Mpa), fast response and relaxation times (<200 ms), high bending stability, high temperature/humidity stability and high cycle stability.

Originality/value

The PDMS “V-type” array structure microelectrode can be used to fabricate pressure sensors and is highly flexible, crack-free and durable.

Details

Sensor Review, vol. 36 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 11 July 2019

Yaser Javed, Mohtashim Mansoor and Irtiza Ali Shah

Pressure, being one of the key variables investigated in scientific and engineering research, requires critical and accurate measurement techniques. With the advancements in…

2170

Abstract

Purpose

Pressure, being one of the key variables investigated in scientific and engineering research, requires critical and accurate measurement techniques. With the advancements in materials and machining technologies, there is a large leap in the measurement techniques including the development of micro electromechanical systems (MEMS) sensors. These sensors are one to two orders smaller in magnitude than traditional sensors and combine electrical and mechanical components that are fabricated using integrated circuit batch-processing technologies. MEMS are finding enormous applications in many industrial fields ranging from medical to automotive, communication to electronics, chemical to aviation and many more with a potential market of billions of dollars. MEMS pressure sensors are now widely used devices owing to their intrinsic properties of small size, light weight, low cost, ease of batch fabrication and integration with an electronic circuit. This paper aims to identify and analyze the common pressure sensing techniques and discuss their uses and advantages. As per our understanding, usage of MEMS pressure sensors in the aerospace industry is quite limited due to cost constraints and indirect measurement approaches owing to the inability to locate sensors in harsh environments. The purpose of this study is to summarize the published literature for application of MEMS pressure sensors in the said field. Five broad application areas have been investigated including: propulsion/turbomachinery applications, turbulent flow diagnosis, experimentalaerodynamics, micro-flow control and unmanned aerial vehicle (UAV)/micro aerial vehicle (MAV) applications.

Design/methodology/approach

The first part of the paper deals with an introduction to MEMS pressure sensors and mathematical relations for its fabrication. The second part covers pressure sensing principles followed by the application of MEMS pressure sensors in five major fields of aerospace industry.

Findings

In this paper, various pressure sensing principles in MEMS and applications of MEMS technology in the aerospace industry have been reviewed. Five application fields have been investigated including: Propulsion/Turbomachinery applications, turbulent flow diagnosis, experimental aerodynamics, micro-flow control and UAV/MAV applications. Applications of MEMS sensors in the aerospace industry are quite limited due to requirements of very high accuracy, high reliability and harsh environment survivability. However, the potential for growth of this technology is foreseen due to inherent features of MEMS sensors’ being light weight, low cost, ease of batch fabrication and capability of integration with electric circuits. All these advantages are very relevant to the aerospace industry. This work is an endeavor to present a comprehensive review of such MEMS pressure sensors, which are used in the aerospace industry and have been reported in recent literature.

Originality/value

As per the author’s understanding, usage of MEMS pressure sensors in the aerospace industry is quite limited due to cost constraints and indirect measurement approaches owing to the inability to locate sensors in harsh environments. Present work is a prime effort in summarizing the published literature for application of MEMS pressure sensors in the said field. Five broad application areas have been investigated including: propulsion/turbomachinery applications, turbulent flow diagnosis, experimental aerodynamics, micro-flow control and UAV/MAV applications.

Details

Sensor Review, vol. 39 no. 5
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 2 July 2018

Samuel Zuk, Alena Pietrikova and Igor Vehec

The purpose of this paper is to analyse the possibilities of mechanical switch replacement by capacitive film touch sensor in applications requiring high reliability and short…

Abstract

Purpose

The purpose of this paper is to analyse the possibilities of mechanical switch replacement by capacitive film touch sensor in applications requiring high reliability and short response time. Advantage of replacing mechanical switch by capacitive touch sensor is no mechanical wear and possible implementation of sensor in application where the switch could not be used or where the flexibility of the sensor substrate is required. The aim of this work is to develop a capacitive touch sensor with the advantage of maximum mechanical resistance, short response time and high sensitivity.

Design/methodology/approach

Based on various possible sensors layouts, the authors realized 18 different (14 self-capacitance and four mutual capacitance) topologies of capacitive sensor for touch applications. Three different technologies – PCB, LTCC and polymer technology – were used to characterize sensor’s behaviour. For precise characterization of different layouts realized on various substrates, the authors used integrated circuit FDC2214 capacitance-to-digital converter.

Findings

Sensing range of the capacitive touch (proximity) sensor is affected by the per cent of area covered by the sensor, and it does not depend on topology of sensor. The highest sensing range offers PCB technology. Flexible substrates can be used as proper substituent to rigid PCB.

Originality/value

The novelty of this work lies in finding the touch capacitive sensors that allow shorter switching times compared to standard mechanical switches.

Details

Microelectronics International, vol. 35 no. 3
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 5 September 2018

Sabereh Golabzaei, Ramin Khajavi, Heydar Ali Shayanfar, Mohammad Esmail Yazdanshenas and Nemat Talebi

There is a developing interest in flexible sensors, especially in the new and intelligent generation of textiles. The purpose of this paper is to fabricate a flexible capacitive…

Abstract

Purpose

There is a developing interest in flexible sensors, especially in the new and intelligent generation of textiles. The purpose of this paper is to fabricate a flexible capacitive sensor on a PET fabric and to investigate some affecting factor on its performance.

Design/methodology/approach

PET fabric, coated with graphite or with graphite/PEDOT:PSS, was applied as electrodes. Two types of electrospun nanoweb layers from polyamide and polyvinyl alcohol polymers were used as dielectrics. Some factors including electrode area, fabric conductivity, fabric roughness, dielectric thickness, dielectric insulation type and vertical pressure were considered as independent variables. The capacity of the sensor and its detection threshold considered as the outcome (response) variables. Control samples were fabricated by using aluminum plates and cellulosic layer as electrodes and dielectric, respectively.

Findings

Results showed that post-coating with PEDOT:PSS would improve the conductivity of electrodes up to 300 Ω in comparison with just graphite-coated samples. It was also found that either by improving the conductivity or increasing the area of electrode plates the sensitivity of sample would be increased in pressure stimulating tests.

Originality/value

The fabric sensor showed remarkable response toward pressure with a lower detection threshold of 30mN/cm2 (obtained capacity ~ 4×104 pF) in comparison with aluminum electrode sensors.

Details

International Journal of Clothing Science and Technology, vol. 30 no. 5
Type: Research Article
ISSN: 0955-6222

Keywords

1 – 10 of 371