Search results

1 – 3 of 3
To view the access options for this content please click here
Article
Publication date: 2 January 2018

Wei-Ting Chang, Huang-Jan Hsu, Cho-Pei Jiang, Shyh-Yuan Lee and Yuan-Min Lin

The aim of this paper is to examine the effects of light controlling system that combined high refractive particles (n-TiO2 [titanium dioxide – TiO2]) and tartrazine lake…

Abstract

Purpose

The aim of this paper is to examine the effects of light controlling system that combined high refractive particles (n-TiO2 [titanium dioxide – TiO2]) and tartrazine lake dye (TL dye) on thickness, flexural strength, flexural modulus and surface details of the 3D-printed resin.

Design/methodology/approach

Influences of different concentrations of n-TiO2 and TL dye in light-cured resin formulations for 3D printing (3DP) application were evaluated, including curing thickness, flexural strength and surface details under scanning electron microscopy.

Findings

The polymerization thickness of samples containing both n-TiO2 and TL dye was lower compared to samples with TL dye solely. Samples containing more n-TiO2 and more TL dye exhibited lower flexural strength and modulus. Ramp models showed that for samples containing 1 per cent TL dye, when their n-TiO2 content increased from 1 to 5 per cent, surface laminate structures became sharper. However, when the TL dye content doubled to 2 per cent, the surface laminate structures were indefinite compared to 1 per cent TL dye-containing counterparts.

Originality value

In visible-light 3DP, light controlling system in cooperate dye with high refractive particles provides better energy distribution and scattering control. High refractive particles, dyes and light exposure time had influenced the surface resolution and mechanical properties of the 3DP products.

Details

Rapid Prototyping Journal, vol. 24 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

To view the access options for this content please click here
Article
Publication date: 28 January 2020

Yuan-Min Lin, Hsuan Chen, Chih-Hsin Lin, Pin-Ju Huang and Shyh-Yuan Lee

The purpose of this study is to develop resin composite materials composed of polycaprolactone (PCL) acrylates and hydroxyapatite (HA) nanoparticles for ultraviolet…

Abstract

Purpose

The purpose of this study is to develop resin composite materials composed of polycaprolactone (PCL) acrylates and hydroxyapatite (HA) nanoparticles for ultraviolet digital light projection (DLP) three-dimensional (3D) printing technique.

Design/methodology/approach

Two PCL-based triacrylates, namely, glycerol-3 caprolactone-triacrylate (Gly-3CL-TA) and glycerol-6 caprolactone-triacrylate (Gly-6CL-TA) were synthesized from ring-opening polymerization of ε-caprolacton monomer in the presence of glycerol and then acrylation was performed using acryloyl chloride. 3D printing resins made of Gly-3CL-TA or Gly-6CL-TA, 5% HA and 3% of photoinitiator 2,4,6-Trimethylbenzoyl-diphenyl-phosphineoxide were then formulated. The surface topography, surface element composition, flexural strength, flexural modulus, cytotoxicity and degradation of the PCL-based scaffolds were then characterized.

Findings

Resin composite composed of Gly-3CL-TA or Gly-6CL-TA and 5% (w/w) of HA can be printed by 405 nm DLP 3D printers. The former has lower viscosity and thus can form a more uniform layer-by-layer structure, while the latter exhibited a higher flexural strength and modulus after being printed. Both composite materials are non-cytotoxic and degradable.

Originality/value

This study provides a direction of the formulation of environment-friendly resin composite for DLP 3D printing. Both resin composites have huge potential in tissue engineering applications.

Details

Rapid Prototyping Journal, vol. 26 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

To view the access options for this content please click here
Article
Publication date: 26 October 2018

Greta Miezinyte, Jolita Ostrauskaite, Egidija Rainosalo, Edvinas Skliutas and Mangirdas Malinauskas

The purpose of this paper is the design and investigation of novel acrylated epoxidized soybean oil-based photocurable systems as candidate materials for optical 3D printing.

Abstract

Purpose

The purpose of this paper is the design and investigation of novel acrylated epoxidized soybean oil-based photocurable systems as candidate materials for optical 3D printing.

Design/methodology/approach

Aromatic dithiols, benzene-1,3-dithiol or benzene-1,4-dithiol, were used as cross-linking agents of acrylated epoxidized soybean oil in these systems. Kinetics of photocross-linking was investigated by real-time photorheometry using two different photoinitiators, 2, 2-dimethoxy-2-phenylacetophenone or 2-hydroxy-2-methylpropiophenone, in different quantities. The effect of the initial composition on the rate of photocross-linking, mechanical, thermal properties and swelling of obtained polymers was investigated.

Findings

The rate of photocross-linking was higher, more cross-links and shorter polymer chains between cross-linking points of the network were formed when benzene-1,4-dithiol and 2, 2-dimethoxy-2-phenylacetophenone were used in compositions. The higher yield of insoluble fraction, glass transition temperatures and values of compressive modulus were obtained when benzene-1,3-dithiol and 2, 2-dimethoxy-2-phenylacetophenone were used in compositions.

Originality/value

This is the first study of acrylated epoxidized soybean oil-based thiol-ene system by real-time photorheometry. The designed novel photocurable systems based on acrylated epoxidized soybean oil and benzenedithiols are promising renewable photoresins for rapid optical 3D printing on demand.

Details

Rapid Prototyping Journal, vol. 25 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 3 of 3