Search results

1 – 10 of over 52000
Article
Publication date: 1 June 2000

K. Wiak

Discusses the 27 papers in ISEF 1999 Proceedings on the subject of electromagnetisms. States the groups of papers cover such subjects within the discipline as: induction machines;…

Abstract

Discusses the 27 papers in ISEF 1999 Proceedings on the subject of electromagnetisms. States the groups of papers cover such subjects within the discipline as: induction machines; reluctance motors; PM motors; transformers and reactors; and special problems and applications. Debates all of these in great detail and itemizes each with greater in‐depth discussion of the various technical applications and areas. Concludes that the recommendations made should be adhered to.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 19 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 6 December 2018

Jinliang Liu, Yanmin Jia, Guanhua Zhang and Jiawei Wang

The calculation of the crack width is necessary for the design of prestressed concrete (PC) members. The purpose of this paper is to develop a numerical model based on the…

Abstract

Purpose

The calculation of the crack width is necessary for the design of prestressed concrete (PC) members. The purpose of this paper is to develop a numerical model based on the bond-slip theory to calculate the crack width in PC beams.

Design/methodology/approach

Stress calculation method for common reinforcement after beam crack has occurred depends on the difference in the bonding performance between prestressed reinforcement and common reinforcement. A numerical calculation model for determining the crack width in PC beams is developed based on the bond-slip theory, and verified using experimental data. The calculation values obtained by the proposed numerical model and code formulas are compared, and the applicability of the numerical model is evaluated.

Findings

The theoretical analysis and experimental results verified that the crack width of PC members calculated based on the bond-slip theory in this study is reasonable. Furthermore, the stress calculation method for the common reinforcement is verified. Compared with the model calculation results obtained in this study, the results obtained from code formulas are more conservative.

Originality/value

The numerical calculation model for crack width proposed in this study can be used by engineers as a reference for calculating the crack width in PC beams to ensure the durability of the PC member.

Details

Multidiscipline Modeling in Materials and Structures, vol. 15 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 8 May 2018

Aibin Zhu, Hongling Wu, Yulei Yang and Shengli He

Because of the various geometric descriptions of different bearing types, performance calculation of journal bearing is complicated, and is difficult in traditional model. This…

Abstract

Purpose

Because of the various geometric descriptions of different bearing types, performance calculation of journal bearing is complicated, and is difficult in traditional model. This paper aims to simplify the calculation of the journal bearing performance, and to reduce the workload.

Design/methodology/approach

On the basis of previous research, a general performance calculation model of journal bearing is proposed in this paper. Eccentricity ratio and attitude angle of axis to each pad are calculated by coordinates of spindle center and each pad center by establishing the unified coordinate system. The surface deformation of journal bearing is taken into consideration, and a correction value is added to the dimensionless oil film thickness.

Findings

The performance calculation results of various fix-pad and tilting-pad journal bearings match the results of the existing references very well, revealing the validity of the model. The general model can greatly reduce programming workload, and increase adaptability to different bearings.

Originality/value

Geometric descriptions of both fix-pad and tilting-pad journal bearings are unified in this model, which can be applied to both standard and non-standard journal bearings with different preload ratios. In addition, due to the unification of different bearings types, this model is more conducive to performance comparison among different bearing types, and promotes the development of new structural forms for journal bearings.

Details

Industrial Lubrication and Tribology, vol. 70 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 28 October 2021

Ce Rong, Zhongbo He, Guangming Xue, Guoping Liu, Bowen Dai and Zhaoqi Zhou

Owing to the excellent performance, giant magnetostrictive materials (GMMs) are widely used in many engineering fields. The dynamic Jiles–Atherton (J-A) model, derived from…

Abstract

Purpose

Owing to the excellent performance, giant magnetostrictive materials (GMMs) are widely used in many engineering fields. The dynamic Jiles–Atherton (J-A) model, derived from physical mechanism, is often used to describe the hysteresis characteristics of GMM. However, this model, despite cited by many different literature studies, seems not to possess unique expressions, which may cause great trouble to the subsequent application. This paper aims to provide the rational expressions of the dynamic J-A model and propose a numerical computation scheme to obtain the model results with high accuracy and fast speed.

Design/methodology/approach

This paper analyzes different published papers and provides a reasonable form of the dynamic J-A model based on functional properties and physical explanations. Then, a numerical computation scheme, combining the Newton method and the explicit Adams method, is designed to solve the modified model. In addition, the error source and transmission path of the numerical solution are investigated, and the influence of model parameters on the calculation error is explored. Finally, some attempts are made to study the influence of numerical scheme parameters on the accuracy and time of the computation process. Subsequently, an optimization procedure is proposed.

Findings

A rational form of the dynamic J-A model is concluded in this paper. Using the proposed numerical calculation scheme, the maximum calculation error, while computing the modified model, can remain below 2 A/m under different model parameter combinations, and the computation time is always less than 0.5 s. After optimization, the calculation speed can be enhanced with the computation accuracy guaranteed.

Originality/value

To the best of the authors’ knowledge, this paper is the first one trying to provide a rational form of the dynamic J-A model among different citations. No other research studies focus on designing a detailed computation scheme targeting the fast and accurate calculation of this model as well. And the performance of the proposed calculation method is validated in different conditions.

Details

Engineering Computations, vol. 39 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 20 October 2023

Yao Chao, Tao Liu and Liming Shen

This study aimed to develop a method to calculate the mattress indentation for further estimating spinal alignment.

Abstract

Purpose

This study aimed to develop a method to calculate the mattress indentation for further estimating spinal alignment.

Design/methodology/approach

A universal indentation calculation model is derived based on the system theory, and the deformation characteristics of each component are analyzed by the finite element (FE) model of a partial air-spring mattress under the initial air pressure of 0.01–0.025 MPa. Finally, the calculation error of the model is verified.

Findings

The results indicate that the indentation calculation model could describe the stain of a mattress given the load and the constitutive model of each element. In addition, the FE model of a partial air-spring mattress can be used for further simulation analysis with an error of 1.47–3.42 mm. Furthermore, the deformation of the series system is mainly contributed by the air spring and the components directly in contact with it, while the top component is mainly deflection deformation. In addition, the error of the calculation model is 2.17–5.59 mm on the condition of 0.01–0.025 MPa, satisfying the engineering application. Finally, the supine spinal alignment is successfully extracted from the mattress indentation.

Research limitations/implications

The limitation of this study is that it needs to verify the practicality of the indentation calculation model for the Bonnier spiral spring mattress. The main feature of the Bonnier spring mattress is that all springs are connected, so the mattress deflection and neighborhood effect are more significant than those of the air-spring mattress. Therefore, the applicability of the model needs to be tested. Moreover, it is worth further research to reduce the deformation error of each component.

Practical implications

As part of the series of studies on the intelligent air-spring mattress, the indentation-based evaluation method of spinal alignment in sleep postures will be studied for hardness and intelligent regulation based on this study.

Social implications

The results of this research are ultimately used for the intelligent adjustment of air-spring mattresses, which automatically adjusts the hardness according to the user's sleep postures and spinal alignment, thus maintaining optimal spinal biomechanics. The successful application of this result could improve the sleep health of the general public.

Originality/value

Based on the series system theory, an indentation calculation model for mattresses with arbitrary structure is proposed, overcoming the dependence of parameters on materials and their combinations when fitting the Burgers model. Further, the spinal alignment in supine posture is extracted from the indentation, laying a theoretical foundation for further recognition and adjustment of the spinal alignment of the intelligent mattress.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 24 August 2021

Frank Bodendorf, Manuel Lutz, Stefan Michelberger and Joerg Franke

Cost transparency is of central importance to reach a consensus between supply chain partners. The purpose of this paper is to contribute to the instrument of cost analysis which…

776

Abstract

Purpose

Cost transparency is of central importance to reach a consensus between supply chain partners. The purpose of this paper is to contribute to the instrument of cost analysis which supports the link between buyers and suppliers.

Design/methodology/approach

Based on a detailed literature review in the area of cost analysis and purchasing, intelligent decision support systems for cost estimation are identified. Subsequently, expert interviews are conducted to determine the application possibilities for managers. The application potential is derived from the synthesis of motivation, identified applications and challenges in the industry. Management recommendations are to be derived by bringing together scientific and practical approaches in the industry.

Findings

On the one hand, the results of this study show that machine learning (ML) is a complex technology that poses many challenges for cost and purchasing managers. On the other hand, ML methods, especially in combination with expert knowledge and other analytical methods, offer immense added value for cost analysis in purchasing.

Originality/value

Digital transformation allows to facilitate the cost calculation process in purchasing decisions. In this context, the application of ML approaches has gained increased attention. While such approaches can lead to high cost reductions on the side of both suppliers and buyers, an intelligent cost analysis is very demanding.

Details

Supply Chain Management: An International Journal, vol. 27 no. 6
Type: Research Article
ISSN: 1359-8546

Keywords

Article
Publication date: 1 October 2018

Jiawei Wang, Jinliang Liu, Guanhua Zhang and Yanmin Jia

The calculation of the shear capacity of inclined section for prestressed reinforced concrete beams is an important topic in the design of concrete members. The purpose of this…

Abstract

Purpose

The calculation of the shear capacity of inclined section for prestressed reinforced concrete beams is an important topic in the design of concrete members. The purpose of this paper, based on the truss-arch model, is to analyze the shear mechanism in prestressed reinforced concrete beams and establish the calculation formula for shear capacity.

Design/methodology/approach

Considering the effect of the prestressed reinforcement axial force on the angle of the diagonal struts and regression coefficient of softening cocalculation of shear capacity is established. According to the shape of the cracks of prestressed reinforced concrete beams under shear compression failure, the tie-arch model for the calculation of shear capacity is established. Shear-failure-test beam results are collected to verify the established formula for shear bearing capacity.

Findings

Through theoretical analysis and experimental beam verification, it is confirmed in this study that the truss-arch model can be used to analyze the shear mechanism of prestressed reinforced concrete members accurately. The calculation formula for the angle of the diagonal struts chosen by considering the effect of prestress is accurate. The relationship between the softening coefficient of concrete and strength of concrete that is established is correct. Considering the effect of the destruction of beam shear plasticity of the concrete on the surface crack shape, the tie-arch model, which is established where the arch axis is parabolic, is applicable.

Originality/value

The formula for shear capacity of prestressed reinforced concrete beams based on this theoretical model can guarantee the effectiveness of the calculation results when the structural properties vary significantly. Engineers can calculate the parameters of prestressed reinforced concrete beams by using the shear capacity calculation formula proposed in this paper.

Details

International Journal of Structural Integrity, vol. 9 no. 5
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 11 May 2015

Evi De Bruyne and Marion Beijer

The purpose of this paper is to illustrate the working of the PACT calculation model, a tool to determine office space dimensions. New ways of working (NWoW) seem to have become a…

Abstract

Purpose

The purpose of this paper is to illustrate the working of the PACT calculation model, a tool to determine office space dimensions. New ways of working (NWoW) seem to have become a fixed value in facility management (FM) practice in The Netherlands today. Stimulated by new technological possibilities, companies are rethinking their office environments to make workplaces more flexible and their use “activity related”. However, this requires a different approach to quantify the needed space and determine the types of workplaces to fit organizations’ processes. The PLaces and ACTivities (PACT) calculation model allows (facility) managers to gain an insight in the number and type of spaces needed, modulated by different scenarios and fitting to the organization and its work processes.

Design/methodology/approach

This article mainly aims to present the PACT model: an office space calculation tool. A case study is presented and calculated to compare an actual work environment of an organization to the PACT calculated results. As input for the model, data were used that were available before the work environment changes in 2007. Additionally, one scenario of a different workplace use is calculated which helped to visualize the accuracy and validity of the model.

Findings

When comparing the post hoc PACT calculated space to the real-life work environment, the number of calculated workplaces and the ratio to the number of employees do not seem to differ strongly. However, substantially less meeting space is calculated by the model, and some elements might require more testing to verify it completely. The scenario calculation shows that the model output changes to adapt to a more flexible work process.

Originality/value

Even though calculation and simulation models for office space are available, the described model puts together many different elements to provide a more holistic calculation. Elements like, for instance, absence, activities and occupational choices are combined.

Details

Journal of Corporate Real Estate, vol. 17 no. 2
Type: Research Article
ISSN: 1463-001X

Keywords

Article
Publication date: 4 August 2022

Jianjin Yue, Wenrui Li, Jian Cheng, Hongxing Xiong, Yu Xue, Xiang Deng and Tinghui Zheng

The calculation of buildings’ carbon footprint (CFP) is an important basis for formulating energy-saving and emission-reduction plans for building. As an important building type…

Abstract

Purpose

The calculation of buildings’ carbon footprint (CFP) is an important basis for formulating energy-saving and emission-reduction plans for building. As an important building type, there is currently no model that considers the time factor to accurately calculate the CFP of hospital building throughout their life cycle. This paper aims to establish a CFP calculation model that covers the life cycle of hospital building and considers time factor.

Design/methodology/approach

On the basis of field and literature research, the basic framework is built using dynamic life cycle assessment (DLCA), and the gray prediction model is used to predict the future value. Finally, a CFP model covering the whole life cycle has been constructed and applied to a hospital building in China.

Findings

The results applied to the case show that the CO2 emission in the operation stage of the hospital building is much higher than that in other stages, and the total CO2 emission in the dynamic and static analysis operation stage accounts for 83.66% and 79.03%, respectively; the difference of annual average emission of CO2 reached 28.33%. The research results show that DLCA is more accurate than traditional static life cycle assessment (LCA) when measuring long-term objects such as carbon emissions in the whole life cycle of hospital building.

Originality/value

This research established a carbon emission calculation model that covers the life cycle of hospital building and considered time factor, which enriches the research on carbon emission of hospital building, a special and extensive public building, and dynamically quantifies the resource consumption of hospital building in the life cycle. This paper provided a certain reference for the green design, energy saving, emission reduction and efficient use of hospital building, obviously, the limitation is that this model is only applicable to hospital building.

Details

Engineering, Construction and Architectural Management, vol. 30 no. 10
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 10 June 2019

Shuang Wang, Gedong Jiang, Xuesong Mei, Chuang Zou, Xian Zhang and Hao Zhang

Because of the compact structure, short flexspline (FS) harmonic drive (HD) is increasingly used. The stress calculation of FS is very important in design and optimization of HD…

Abstract

Purpose

Because of the compact structure, short flexspline (FS) harmonic drive (HD) is increasingly used. The stress calculation of FS is very important in design and optimization of HD system. This paper aims to study the stress calculation methods for short FS, based on mechanics analysis and finite element method (FEM).

Design/methodology/approach

A rapid stress calculation method, based on mechanics analysis, is proposed for the short FS of HD. To verify the stress calculation precision of short FS, a complete finite element model of HD is established. The results of stress and deformation of short FS in different lengths are solved by FEM.

Findings

Through the rapid calculation method, the analytical relationship between circumferential stress and length of cylinder was obtained. And the circumferential stress has proportional relation with the reciprocal of squared length. The FEM results verified that the rapid stress calculation method could obtain accurate results.

Research limitations/implications

The rapid mechanics analysis method is practiced to evaluate the strength of FS at the design stage of HD. And the complete model of HD could contribute to improving the accuracy of FEM results.

Originality/value

The rapid calculation method is developed based on mechanics analysis method of cylinder and equivalent additional bending moment model, through which the analytical relationship between circumferential stress and length of cylinder was obtained. The complete three-dimensional finite element model of HD takes the stiffness of bearing into consideration, which can be used in the numerical simulation in the future work to improve the accuracy.

Details

Engineering Computations, vol. 36 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of over 52000