Search results

1 – 10 of over 6000
Article
Publication date: 17 November 2023

Moutaz Abojeib, Mohammad Ghaith Mahaini and Mhd Osama Alchaar

This paper aims to investigate the zakat disclosure of Islamic banks at the global level. It is important for depositors and shareholders of Islamic banks to know whether the bank…

Abstract

Purpose

This paper aims to investigate the zakat disclosure of Islamic banks at the global level. It is important for depositors and shareholders of Islamic banks to know whether the bank is paying zakat on their behalf or not. Additionally, disclosing the calculation method used is also necessary to eliminate uncertainties resulting from ambiguous reporting that can mislead the stakeholders. This issue becomes more obvious when considering that depositors and shareholders may have different accounts with different Islamic banks, which makes it quite confusing to have multiple ways of zakat calculation or different approaches on who is the party that pays it. This study analyzes the current practices across 13 countries and recommends best practices.

Design/methodology/approach

The objective of the paper objective is achieved through analyzing the annual reports of 34 Islamic banks in 13 countries for the years 2014 and 2019. It further quantifies the zakat disclosure by constructing a zakat disclosure index. This index considers the disclosure of four major constituents covering the amount and the responsibility for payment, the calculation method, the involvement of the Shariah board and the zakat duty on investment account holders. For further robustness, this study is further supported by content analysis measures using the zakat word count in annual reports.

Findings

The results indicate a major issue in zakat disclosure. The overall average of disclosure index is low. Most of the banks disclose limited information about zakat, such as the amount and the responsibility for payment, in their annual reports. Less than 40% of the examined banks disclose information about the role of the Shariah board in zakat calculation, and a very limited number of banks (9%) are found to disclose enough details about the zakat calculation method. Furthermore, none of the examined banks mentions the zakat due for the investment accounts. Overall, zakat disclosure of most of the banks, whether following Accounting and Auditing Organization for Islamic Financial Institutions or otherwise, are found to be not up to the expected best practices.

Research limitations/implications

Among the limitations of this study is the sole dependence on annual reports of Islamic banks without considering other means that banks might be using to communicate zakat-related matters to stakeholders. Examples of such means include a website, social media and other direct or indirect marketing materials. Additionally, the results of this study shall not be overgeneralized regarding differences between countries because the sample does not include all Islamic banks in the selected country. Future research may use the proposed zakat disclosure index on a country-specific data sample.

Practical implications

The findings have significant implications as they raise a serious concern regarding the sufficiency of the Islamic banks’ disclosure about a core area of their responsibility, that is, the zakat. The index developed can be a tentative measure of zakat disclosure transparency pending further review. The result further suggests looking at the composition of members of Shariah boards to include at least one member with a sound accounting background. Zakat is a religious duty; therefore, a perceived lack of transparency on the amount, method of calculation and how the zakat is paid may affect the future injection of capital into Islamic banks.

Originality/value

An important contribution of this paper lies in the fact that the collected data is not provided in any available database. Rather, it is manually captured from the individual annual reports of reviewed Islamic banks. Further, this paper proposes an index to measure the zakat disclosure at bank and country levels.

Details

Journal of Islamic Accounting and Business Research, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1759-0817

Keywords

Article
Publication date: 22 September 2023

Yue Wang, Han Zhao, Haiyue Yang and Xiangshuai Song

The visible time window (VTW) calculation of satellites to ground targets is significant for Earth observation satellites' operation management and control. With the improvement…

Abstract

Purpose

The visible time window (VTW) calculation of satellites to ground targets is significant for Earth observation satellites' operation management and control. With the improvement of satellite maneuvering capability and the complexity of on-orbit observation tasks, the traditional VTW calculation methods can no longer meet the demands of satellite operation management and control due to a large amount of calculation and low efficiency. The purpose of this study is to propose a fast VTW calculation method based on map segmentation named map segmentation method (MSM), to improve the calculation efficiency, and further solve this problem.

Design/methodology/approach

The main feature of the MSM method is to segment the map and subsatellite trajectories and traverse the subsatellite points within a specific range around the target, significantly reducing the search space and the amount of computation and improving computational efficiency.

Findings

Numerical simulations for two satellite orbits are implemented to verify the feasibility of the proposed VTW calculation method, and the traditional traversal method (TM) is also performed for comparative analysis. The results show that the proposed method can obtain the same VTW, using less calculation time than the TM. The computational efficiency is significantly improved, especially for many tasks. The calculation time of observing 500 targets is saved by more than 70%, indicating a broad application prospect.

Originality/value

This paper proposes an original VTW calculation method based on map segmentation to improve the calculation efficiency. The simulation scenarios are designed to verify the accuracy and effectiveness of the proposed method, and the observation targets are randomly distributed on the map. For comparative analysis, the TM is also performed under the same simulation conditions.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 10
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 20 October 2023

Yao Chao, Tao Liu and Liming Shen

This study aimed to develop a method to calculate the mattress indentation for further estimating spinal alignment.

Abstract

Purpose

This study aimed to develop a method to calculate the mattress indentation for further estimating spinal alignment.

Design/methodology/approach

A universal indentation calculation model is derived based on the system theory, and the deformation characteristics of each component are analyzed by the finite element (FE) model of a partial air-spring mattress under the initial air pressure of 0.01–0.025 MPa. Finally, the calculation error of the model is verified.

Findings

The results indicate that the indentation calculation model could describe the stain of a mattress given the load and the constitutive model of each element. In addition, the FE model of a partial air-spring mattress can be used for further simulation analysis with an error of 1.47–3.42 mm. Furthermore, the deformation of the series system is mainly contributed by the air spring and the components directly in contact with it, while the top component is mainly deflection deformation. In addition, the error of the calculation model is 2.17–5.59 mm on the condition of 0.01–0.025 MPa, satisfying the engineering application. Finally, the supine spinal alignment is successfully extracted from the mattress indentation.

Research limitations/implications

The limitation of this study is that it needs to verify the practicality of the indentation calculation model for the Bonnier spiral spring mattress. The main feature of the Bonnier spring mattress is that all springs are connected, so the mattress deflection and neighborhood effect are more significant than those of the air-spring mattress. Therefore, the applicability of the model needs to be tested. Moreover, it is worth further research to reduce the deformation error of each component.

Practical implications

As part of the series of studies on the intelligent air-spring mattress, the indentation-based evaluation method of spinal alignment in sleep postures will be studied for hardness and intelligent regulation based on this study.

Social implications

The results of this research are ultimately used for the intelligent adjustment of air-spring mattresses, which automatically adjusts the hardness according to the user's sleep postures and spinal alignment, thus maintaining optimal spinal biomechanics. The successful application of this result could improve the sleep health of the general public.

Originality/value

Based on the series system theory, an indentation calculation model for mattresses with arbitrary structure is proposed, overcoming the dependence of parameters on materials and their combinations when fitting the Burgers model. Further, the spinal alignment in supine posture is extracted from the indentation, laying a theoretical foundation for further recognition and adjustment of the spinal alignment of the intelligent mattress.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 18 March 2024

Lifeng Wang, Fei Yu, Ziwang Xiao and Qi Wang

When the reinforced concrete beams are reinforced by bonding steel plates to the bottom, excessive use of steel plates will make the reinforced concrete beams become…

Abstract

Purpose

When the reinforced concrete beams are reinforced by bonding steel plates to the bottom, excessive use of steel plates will make the reinforced concrete beams become super-reinforced beams, and there are security risks in the actual use of super-reinforced beams. In order to avoid the occurrence of this situation, the purpose of this paper is to study the calculation method of the maximum number of bonded steel plates to reinforce reinforced concrete beams.

Design/methodology/approach

First of all, when establishing the limit failure state of the reinforced member, this paper comprehensively considers the role of the tensile steel bar and steel plate and takes the load effect before reinforcement as the negative contribution of the maximum number of bonded steel plates that can be used for reinforcement. Through the definition of the equivalent tensile strength, equivalent elastic modulus and equivalent yield strain of the tensile steel bar and steel plate, a method to determine the relative limit compression zone height of the reinforced member is obtained. Second, based on the maximum ratio of (reinforcement + steel plate), the relative limit compression zone height and the equivalent tensile strength of the tensile steel bar and steel plate of the reinforced member, the calculation method of the maximum number of bonded steel plates is derived. Then, the static load test of the test beam is carried out and the corresponding numerical model is established, and the reliability of the numerical model is verified by comparison. Finally, the accuracy of the calculation method of the maximum number of bonded steel plates is proved by the numerical model.

Findings

The numerical simulation results show that when the steel plate width is 800 mm and the thickness is 1–4 mm, the reinforced concrete beam has a delayed yield platform when it reaches the limit state, and the failure mode conforms to the basic stress characteristics of the balanced-reinforced beam. When the steel plate thickness is 5–8 mm, the sudden failure occurs without obvious warning when the reinforced concrete beam reaches the limit state. The failure mode conforms to the basic mechanical characteristics of the super-reinforced beam failure, and the bending moment of the beam failure depends only on the compressive strength of the concrete. The results of the calculation and analysis show that the maximum number of bonded steel plates for reinforced concrete beams in this experiment is 3,487 mm2. When the width of the steel plate is 800 mm, the maximum thickness of the steel plate can be 4.36 mm. That is, when the thickness of the steel plate, the reinforced concrete beam is still the balanced-reinforced beam. When the thickness of the steel plate, the reinforced concrete beam will become a super-reinforced beam after reinforcement. The calculation results are in good agreement with the numerical simulation results, which proves the accuracy of the calculation method.

Originality/value

This paper presents a method for calculating the maximum number of steel plates attached to the bottom of reinforced concrete beams. First, based on the experimental research, the failure mode of reinforced concrete beams with different number of steel plates is simulated by the numerical model, and then the result of the calculation method is compared with the result of the numerical simulation to ensure the accuracy of the calculation method of the maximum number of bonded steel plates. And the study does not require a large number of experimental samples, which has a certain economy. The research result can be used to control the number of steel plates in similar reinforcement designs.

Details

International Journal of Structural Integrity, vol. 15 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 23 January 2024

Elodie Allain, Samuel Sponem and Frederic Munck

For many years, universities have been confronted with the rise of a managerial logic, in line with the new public management movement. They have been encouraged to implement new…

Abstract

Purpose

For many years, universities have been confronted with the rise of a managerial logic, in line with the new public management movement. They have been encouraged to implement new accounting tools such as cost calculations. Literature shows mixed results regarding the institutionalization of such tools, and the logic they try to support. In most studies, the agency of actors is examined to explain the institutionalization of accounting tools and only few studies consider the specific characteristics of these accounting tools to understand this process. To enrich the literature on institutionalization, this article examines how the affordances of costing tools affect the institutionalization of these tools and the institutionalization of new logics in pluralistic organizations such as universities.

Design/methodology/approach

The data were collected at a French university which is considered as an example of successful institutionalization of the tool and is cited as a model to follow. The data include a four-month participant observation and 18 interviews. Access to internal and external documents was also available. The analysis of the data is based on a framework proposed by Jarzabkowski and Kaplan (2015), which draws on the concept of affordance of tools, to investigate how the possibilities and constraints of costing tools shape the selection, application and outcomes of cost calculations.

Findings

The results show that the affordances of cost calculations facilitate the institutionalization of a new logic and its coexistence with previous logics. Technical affordances are mobilized by actors aiming to bring in a new logic without directly confronting the old ones. Role affordances also play a major role in the institutionalization by facilitating the adhesion of the actors through multiple applications of the tool. Finally, value-based affordances reinforce the institutionalization of a managerial logic by emphasizing the values shared with the other logics and thus facilitating the coexistence of the three logics at stake in the university.

Originality/value

This research provides three main contributions. First, it contributes to the literature on the institutionalization of accounting tools. It shows the relevance of the concept of affordance (Leonardi and Vaast, 2017) to unpack the characteristics of accounting tools (including the constraints and the possibilities they offer) and to achieve a better understanding of the institutionalization of accounting tools. Second, this paper contributes to the literature dealing with the role of accounting tools in the institutionalization of logics. The results suggest that the institutionalization of tools and the institutionalization of logics are two different phenomena that move at different speeds. However, these phenomena interact: the institutionalization of accounting tools can facilitate the coexistence of different logics in pluralistic organizations. Third, this paper contributes to the literature on affordances. The data reveal several types of affordances for accounting tools: technical affordances that refer to the technical possibilities to shape and tweak the tool; role affordances that refer to the various roles and purposes that the tool can fulfill and value-based affordances that refer to the plasticity of the values and beliefs that the tool can convey. The study shows that each type of affordance is prevalent at a different time of the process of institutionalization and that the combination of these affordances contributes to the institutionalization of the tool and of new logics.

Details

Accounting, Auditing & Accountability Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0951-3574

Keywords

Open Access
Article
Publication date: 30 October 2023

Lisa Hedvall, Helena Forslund and Stig-Arne Mattsson

The purposes of this study were (1) to explore empirical challenges in dimensioning safety buffers and their implications and (2) to organise those challenges into a framework.

Abstract

Purpose

The purposes of this study were (1) to explore empirical challenges in dimensioning safety buffers and their implications and (2) to organise those challenges into a framework.

Design/methodology/approach

In a multiple-case study following an exploratory, qualitative and empirical approach, 20 semi-structured interviews were conducted in six cases. Representatives of all cases subsequently participated in an interactive workshop, after which a questionnaire was used to assess the impact and presence of each challenge. A cross-case analysis was performed to situate empirical findings within the literature.

Findings

Ten challenges were identified in four areas of dimensioning safety buffers: decision management, responsibilities, methods for dimensioning safety buffers and input data. All challenges had both direct and indirect negative implications for dimensioning safety buffers and were synthesised into a framework.

Research limitations/implications

This study complements the literature on dimensioning safety buffers with qualitative insights into challenges in dimensioning safety buffers and implications in practice.

Practical implications

Practitioners can use the framework to understand and overcome challenges in dimensioning safety buffers and their negative implications.

Originality/value

This study responds to the scarcity of qualitative and empirical studies on dimensioning safety buffers and the absence of any overview of the challenges therein.

Details

Journal of Manufacturing Technology Management, vol. 34 no. 9
Type: Research Article
ISSN: 1741-038X

Keywords

Article
Publication date: 10 July 2023

Rui Nie, Yaqian Meng, Peixin Wang, Peng Su and Jikai Si

The purpose of this study is to calculate the normal force of a two degree of freedom direct drive induction motor considering coupling effects based on an analytical model…

Abstract

Purpose

The purpose of this study is to calculate the normal force of a two degree of freedom direct drive induction motor considering coupling effects based on an analytical model. Compared with the traditional single degree of freedom motor, normal force characteristics of two-degree-of-freedom direct drive induction motor (2DOFDDIM) is affected by coupling effect when the machine is in a helical motion. To theoretically explain the influence mechanism of coupling effect, this paper conducts a quantitative analysis of the influence of coupling effect on normal force based on the established analytical model of normal force considering coupling effect.

Design/methodology/approach

Firstly, the normal forces generated by 2DOFDDIM in linear motion, rotary motion and helical motion are investigated and compared to prove the effect of the coupling effect on the normal force. During this study, several coupling factors are established to modify the calculation equations of the normal force. Then, based on the multilayer theoretical method and Maxwell stress method, a novel normal force calculation model of 2DOFDDIM is established taking the coupling effect into account, which can easily calculate the normal force of 2DOFDDIM under different motions conditions. Finally, the calculation results are verified by the results of 3D finite element model, which proves the correctness of the established calculating model.

Findings

The coupling effect produced by the helical motion of 2DOFDDIM affects the normal force.

Originality/value

In this paper, the analytical model of the normal force of 2DOFDDIM considering the coupling effect is established, which provides a fast calculation for the design of the motor.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 14 March 2023

Jiahao Zhu, Guohua Xu and Yongjie Shi

This paper aims to develop a new method of fuselage drag optimization that can obtain results faster than the conventional methods based on full computational fluid dynamics (CFD…

Abstract

Purpose

This paper aims to develop a new method of fuselage drag optimization that can obtain results faster than the conventional methods based on full computational fluid dynamics (CFD) calculations and can be used to improve the efficiency of preliminary design.

Design/methodology/approach

An efficient method for helicopter fuselage shape optimization based on surrogate-based optimization is presented. Two numerical simulation methods are applied in different stages of optimization according to their relative advantages. The fast panel method is used to calculate the sample data to save calculation time for a large number of sample points. The initial solution is obtained by combining the Kriging surrogate model and the multi-island genetic algorithm. Then, the accuracy of the solution is determined by using the infill criteria based on CFD corrections. A parametric model of the fuselage is established by several characteristic sections and guiding curves.

Findings

It is demonstrated that this method can greatly reduce the calculation time while ensuring a high accuracy in the XH-59A helicopter example. The drag coefficient of the optimized fuselage is reduced by 13.3%. Because of the use of different calculation methods for samples, this novel method reduces the total calculation time by almost fourfold compared with full CFD calculations.

Originality/value

To the best of the authors’ knowledge, this is the first study to provide a novel method of fuselage drag optimization by combining different numerical simulation methods. Some suggestions on fuselage shape optimization are given for the XH-59A example.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 7
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 4 August 2022

Jianjin Yue, Wenrui Li, Jian Cheng, Hongxing Xiong, Yu Xue, Xiang Deng and Tinghui Zheng

The calculation of buildings’ carbon footprint (CFP) is an important basis for formulating energy-saving and emission-reduction plans for building. As an important building type…

Abstract

Purpose

The calculation of buildings’ carbon footprint (CFP) is an important basis for formulating energy-saving and emission-reduction plans for building. As an important building type, there is currently no model that considers the time factor to accurately calculate the CFP of hospital building throughout their life cycle. This paper aims to establish a CFP calculation model that covers the life cycle of hospital building and considers time factor.

Design/methodology/approach

On the basis of field and literature research, the basic framework is built using dynamic life cycle assessment (DLCA), and the gray prediction model is used to predict the future value. Finally, a CFP model covering the whole life cycle has been constructed and applied to a hospital building in China.

Findings

The results applied to the case show that the CO2 emission in the operation stage of the hospital building is much higher than that in other stages, and the total CO2 emission in the dynamic and static analysis operation stage accounts for 83.66% and 79.03%, respectively; the difference of annual average emission of CO2 reached 28.33%. The research results show that DLCA is more accurate than traditional static life cycle assessment (LCA) when measuring long-term objects such as carbon emissions in the whole life cycle of hospital building.

Originality/value

This research established a carbon emission calculation model that covers the life cycle of hospital building and considered time factor, which enriches the research on carbon emission of hospital building, a special and extensive public building, and dynamically quantifies the resource consumption of hospital building in the life cycle. This paper provided a certain reference for the green design, energy saving, emission reduction and efficient use of hospital building, obviously, the limitation is that this model is only applicable to hospital building.

Details

Engineering, Construction and Architectural Management, vol. 30 no. 10
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 11 July 2022

Xiaomin Zhao, Fuminobu Ozaki, Takeo Hirashima, Kei Kimura, Yukio Murakami, Jun-ichi Suzuki and Naoya Yotsumoto

The main purpose of this study was to propose theoretical calculation models to evaluate the theoretical bending strengths of welded wide-flange section steel beams with local…

Abstract

Purpose

The main purpose of this study was to propose theoretical calculation models to evaluate the theoretical bending strengths of welded wide-flange section steel beams with local buckling at elevated temperatures.

Design/methodology/approach

Steady-state tests using various test parameters, including width-thickness ratios (Class 2–4) and specimen temperatures (ambient temperature, 400, 500, 600, 700, and 800°C), were performed on 18 steel beam specimens using roller supports to examine the maximum bending moment and bending strength after local buckling. A detailed calculation model (DCM) based on the equilibrium of the axial force in the cross-section and a simple calculation model (SCM) for a practical fire-resistant design were proposed. The validity of the calculation models was verified using the bending test results.

Findings

The strain concentration at the local buckling cross-section was mitigated in the elevated-temperature region, resulting in a small bending moment degradation after local buckling. The theoretical bending strengths after local buckling, evaluated from the calculation models, were in good agreement with the test results at elevated temperatures.

Originality/value

The effect of local buckling on the bending behaviour after the maximum bending strength in high-temperature regions was quantified. Two types of calculation models were proposed to evaluate the theoretical bending strength after local buckling.

Details

Journal of Structural Fire Engineering, vol. 14 no. 2
Type: Research Article
ISSN: 2040-2317

Keywords

1 – 10 of over 6000