Search results

1 – 6 of 6
Article
Publication date: 2 March 2023

Bahareh Nikmehr, Bidur Kafle and Riyadh Al-Ameri

This study aimed to review various existing methods for improving the quality of recycled concrete aggregates (RCAs) as a possible substitution for natural aggregates (NAs) in…

Abstract

Purpose

This study aimed to review various existing methods for improving the quality of recycled concrete aggregates (RCAs) as a possible substitution for natural aggregates (NAs) in concrete. It is vital as the old paste attached to the RCA weakens its structure. It is due to the porous structure of the RCA with cracks, weakening the interfacial transition zone (ITZ) between the RCA and binding material, negatively impacting the concrete's properties. To this end, various methods for reinforcement of the RCA, cleaning the RCA's old paste and enhancing the quality of the RCA-based concrete without RCA modification are studied in terms of environmental effects, cost and technical matters. Furthermore, this research sought to identify gaps in knowledge and future research directions.

Design/methodology/approach

The review of the relevant journal papers revealed that various methods exist for improving the properties of RCAs and RCA-based concrete. A decision matrix was developed and implemented for ranking these techniques based on environmental, economic and technical criteria.

Findings

The identified methods for reinforcement of the RCA include accelerated carbonation, bio deposition, soaking in polymer emulsions, soaking in waterproofing admixture, soaking in sodium silicate, soaking in nanoparticles and coating with geopolymer slurry. Moreover, cleaning the RCA's old paste is possible using acid, water, heating, thermal and mechanical treatment, thermo-mechanical and electro-dynamic treatment. Added to these treatment techniques, using RCA in saturated surface dry (SSD) mixing approaches and adding fibres or pozzolana enhance the quality of the RCA-based concrete without RCA modification. The study ranked these techniques based on environmental, economic and technical criteria. Ultimately, adding fibres, pozzolana and coating RCA with geopolymer slurry were introduced as the best techniques based on the nominated criteria.

Practical implications

The study supported the need for better knowledge regarding the existing treatment techniques for RCA improvement. The outcomes of this research offer an understanding of each RCA enrichment technique's importance in environmental, economic and technical criteria.

Originality/value

The practicality of the RCA treatment techniques is based on economic, environmental and technical specifications for rating the existing treatment techniques.

Details

Smart and Sustainable Built Environment, vol. 13 no. 3
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 12 April 2024

Shivendra Singh Rathore and Chakradhara Rao Meesala

The purpose of this paper is to investigate the effect of the replacement of natural coarse aggregate (NCA) with different percentages of recycled coarse aggregate (RCA) on…

Abstract

Purpose

The purpose of this paper is to investigate the effect of the replacement of natural coarse aggregate (NCA) with different percentages of recycled coarse aggregate (RCA) on properties of low calcium fly ash (FA)-based geopolymer concrete (GPC) cured at oven temperature. Further, this paper aims to study the effect of partial replacement of FA by ground granulated blast slag (GGBS) in GPC made with both NCA and RCA cured under ambient temperature curing.

Design/methodology/approach

M25 grade of ordinary Portland cement (OPC) concrete was designed according to IS: 10262-2019 with 100% NCA as control concrete. Since no standard guidelines are available in the literature for GPC, the same mix proportion was adopted for the GPC by replacing the OPC with 100% FA and W/C ratio by alkalinity/binder ratio. All FA-based GPC mixes were prepared with 12 M of sodium hydroxide (NaOH) and an alkalinity ratio, i.e. sodium hydroxide to sodium silicate (NaOH:Na2SiO3) of 1:1.5, subjected to 90°C temperature for 48 h of curing. The NCA were replaced with 50% and 100% RCA in both OPC and GPC mixes. Further, FA was partially replaced with 15% GGBS in GPC made with the above percentages of NCA and RCA, and they were given ambient temperature curing with the same molarity of NaOH and alkalinity ratio.

Findings

The workability, compressive strength, split tensile strength, flexural strength, water absorption, density, volume of voids and rebound hammer value of all the mixes were studied. Further, the relationship between compressive strength and other mechanical properties of GPC mixes were established and compared with the well-established relationships available for conventional concrete. From the experimental results, it is found that the compressive strength of GPC under ambient curing condition at 28 days with 100% NCA, 50% RCA and 100% RCA were, respectively, 14.8%, 12.85% and 17.76% higher than those of OPC concrete. Further, it is found that 85% FA and 15% GGBS-based GPC with RCA under ambient curing shown superior performance than OPC concrete and FA-based GPC cured under oven curing.

Research limitations/implications

The scope of the present paper is limited to replace the FA by 15% GGBS. Further, only 50% and 100% RCA are used in place of natural aggregate. However, in future study, the replacement of FA by different amounts of GGBS (20%, 25%, 30% and 35%) may be tried to decide the optimum utilisation of GGBS so that the applications of GPC can be widely used in cast in situ applications, i.e. under ambient curing condition. Further, in the present study, the natural aggregate is replaced with only 50% and 100% RCA in GPC. However, further investigations may be carried out by considering different percentages between 50 and 100 with the optimum compositions of FA and GGBS to enhance the use of RCA in GPC applications. The present study is further limited to only the mechanical properties and a few other properties of GPC. For wider use of GPC under ambient curing conditions, the structural performance of GPC needs to be understood. Therefore, the structural performance of GPC subjected to different loadings under ambient curing with RCA to be investigated in future study.

Originality/value

The replacement percentage of natural aggregate by RCA may be further enhanced to 50% in GPC under ambient curing condition without compromising on the mechanical properties of concrete. This may be a good alternative for OPC and natural aggregate to reduce pollution and leads sustainability in the construction.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 17 April 2024

Quratulain Mohtashim, Salma Farooq and Fareha Asim

The application of indigo dyes in the denim industries has been criticised due to the introduction of non-renewable oxidation products into the environment. Previous studies have…

Abstract

Purpose

The application of indigo dyes in the denim industries has been criticised due to the introduction of non-renewable oxidation products into the environment. Previous studies have investigated that reducing sugars can be used as green alternatives to sodium dithionite in the indigo dyeing of cotton fabric owing to their reduced and stable redox potential in the dye bath. The purpose of this study was to dye denim cotton fabric with indigo dye using various reducing sugars and alkalis. The use of sucrose and potassium hydroxide (KOH) for indigo dyeing has been explored for the first time.

Design/methodology/approach

A mixed factorial design with four variables including alkali, pH, number of dips and type of reducing sugar at different levels was studied to identify a significant correlation between the effect of these variables on the colour strength and fastness properties of the dyeings.

Findings

Investigations were made to examine the significant factors and interactions of the selected responses in the eco-friendly dyeing method. This process has the potential to reduce the load of sulphite and sulphate generated in the dyebath due to the use of a conventional reducing agent, sodium dithionite. The colour strength of the dyeing reduced with fructose was found to be better than other reducing sugars and significantly influenced by the number of dips, pH levels and the interaction between pH and reducing sugars. Using fructose for indigo dyeing with two dips at a pH of 11.5, using KOH as an alkali, results in higher colour strength values. The fastness properties of the indigo-dyed sample with reducing sugars ranging from fair to good or good to excellent. Specifically, colour change receives a rating of grey scale 3–4, staining 4–5, dry rubbing 4 and light fastness 3–4. These assessments hold true across various factors such as the type of reducing sugar, alkali, pH and the number of dips. The optimised parameters leading to improved colour strength and fastness properties are also discussed.

Originality/value

This dyeing technique is novel and a green alternative to dithionite denim dyeing. This process is found to be useful for indigo dyeing of denim fabric leading to reduced and stable redox potential in the dyebath and acceptable colour strength of the dyed fabric.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 24 November 2022

Youssef L. Nashed, Fouad Zahran, Mohamed Adel Youssef, Manal G. Mohamed and Azza M. Mazrouaa

The purpose of this study is to examine how well reinforced concrete structures can be shielded against concrete carbonation using anti-carbonation coatings based on synthetic…

Abstract

Purpose

The purpose of this study is to examine how well reinforced concrete structures can be shielded against concrete carbonation using anti-carbonation coatings based on synthetic polymer.

Design/methodology/approach

Applying free radical polymerization, an acrylate terpolymer emulsion that a surfactant had stabilized was created. A thermogravimetric analysis, minimum film-forming temperature, Fourier transform infrared spectroscopy and particle size distribution are used to characterize the prepared eco-friendly water base acrylate terpolymer emulsion. Using three different percentages of the acrylate terpolymer emulsion produced, 35%, 45% and 55%, the anti-carbonation coating was formed. Tensile strength, tensile strain, elongation, crack-bridging ability, carbon dioxide permeability, chloride ion diffusion, average pull-off adhesion strength, water vapor transmission, gloss, wet scrub resistance, QUV/weathering and storage stability are the characteristics of the anti-carbonation coating.

Findings

The formulated acrylate terpolymer emulsion enhances anti-carbonation coating performance in CO2 permeability, Cl-diffusion, crack bridging, pull-off adhesion strength and water vapor transmission. The formed coating based on the formulated acrylate terpolymer emulsion performed better than its commercial counterpart.

Practical implications

To protect the steel embedded in concrete from corrosion and increase the life span of concrete, the surface of cement is treated with an anti-carbonation coating based on synthetic acrylate terpolymer emulsion.

Social implications

In addition to saving lives from building collapse, it maintains the infrastructure for the long run.

Originality/value

The anti-carbonation coating, which is based on the synthetic acrylate terpolymer emulsion, is environmentally benign and stops the entry of carbon dioxide and chlorides, which are the main causes of steel corrosion in concrete.

Details

Pigment & Resin Technology, vol. 53 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Open Access
Article
Publication date: 13 April 2023

Salim Ahmed, Khushboo Kumari and Durgeshwer Singh

Petroleum hydrocarbons are naturally occurring flammable fossil fuels used as conventional energy sources. It has carcinogenic, mutagenic properties and is considered a hazardous…

1972

Abstract

Purpose

Petroleum hydrocarbons are naturally occurring flammable fossil fuels used as conventional energy sources. It has carcinogenic, mutagenic properties and is considered a hazardous pollutant. Soil contaminated with petroleum hydrocarbons adversely affects the properties of soil. This paper aim to remove pollutants from the environment is an urgent need of the hour to maintain the proper functioning of soil ecosystems.

Design/methodology/approach

The ability of micro-organisms to degrade petroleum hydrocarbons makes it possible to use these microorganisms to clean the environment from petroleum pollution. For preparing this review, research papers and review articles related to petroleum hydrocarbons degradation by micro-organisms were collected from journals and various search engines.

Findings

Various physical and chemical methods are used for remediation of petroleum hydrocarbons contaminants. However, these methods have several disadvantages. This paper will discuss a novel understanding of petroleum hydrocarbons degradation and how micro-organisms help in petroleum-contaminated soil restoration. Bioremediation is recognized as the most environment-friendly technique for remediation. The research studies demonstrated that bacterial consortium have high biodegradation rate of petroleum hydrocarbons ranging from 83% to 89%.

Social implications

Proper management of petroleum hydrocarbons pollutants from the environment is necessary because of their toxicity effects on human and environmental health.

Originality/value

This paper discussed novel mechanisms adopted by bacteria for biodegradation of petroleum hydrocarbons, aerobic and anaerobic biodegradation pathways, genes and enzymes involved in petroleum hydrocarbons biodegradation.

Details

Arab Gulf Journal of Scientific Research, vol. 42 no. 2
Type: Research Article
ISSN: 1985-9899

Keywords

Article
Publication date: 26 February 2024

Varsha Vihan, V.P. Singh, Pramila Umaraw, Akhilesh Kumar Verma, Shardanand Verma and Chirag Singh

The purpose of this study is to investigate the impact of integrating “Licorice powder” into curd balls on their storage stability under refrigeration conditions. Through this…

Abstract

Purpose

The purpose of this study is to investigate the impact of integrating “Licorice powder” into curd balls on their storage stability under refrigeration conditions. Through this examination, this study aims to evaluate the potential effects of licorice powder on extending the shelf life, maintaining quality attributes and preserving the overall stability of curd balls when stored at refrigeration temperatures.

Design/methodology/approach

Licorice powder, in varying quantities (1%, 2% and 3%), was incorporated into curd balls alongside a control group lacking licorice (0%). These batches were subsequently stored for 25 days under refrigeration at a temperature of 4 ± 1ºC, using aerobic packaging conditions. During this storage period, the samples were regularly monitored and analyzed for various parameters to assess changes in their properties and qualities.

Findings

The findings indicated that in the treatment groups, pH and titratable acidity were notably lower than those in the control group (p = 0.05). Curd balls enriched with licorice powder exhibited significantly higher levels of 2, 2-diphenyl-1-picrylhydrazyl, 2-2-azinobis-3ethylbenthiazoline-6-sulphonic acid and total phenolic contents compared to the control (p = 0.05). Furthermore, curd balls containing licorice powder displayed notably lower levels of peroxide, thiobarbituric acid reactive substances and free fatty acids in comparison to the control (p = 0.05). Among all samples, T3 (3%) demonstrated significantly less microbial growth (p = 0.05) than the other groups. Conversely, the sensory panel rated T2 significantly higher than T3 (p = 0.05).

Originality/value

The investigation highlights that curd balls enriched with 2.0% licorice powder demonstrated significant efficacy in preventing the deterioration of physicochemical attributes, enhancing antioxidant capacity, restraining lipid oxidation, curbing microbial growth and ultimately exhibiting the most favorable organoleptic properties among the tested variations. This finding underscores the potential of incorporating 2.0% licorice powder as an effective agent for bolstering the storage stability and overall quality of curd balls during refrigerated storage.

Details

Nutrition & Food Science , vol. 54 no. 3
Type: Research Article
ISSN: 0034-6659

Keywords

1 – 6 of 6