Search results

1 – 10 of 142
Article
Publication date: 1 March 2024

Khaled Mostafa and Azza El-Sanabary

The novelty addressed here is undertaken by using tailor-made and fully characterized starch nanoparticles (SNPs) having a particle size ranging from 80 to 100 nm with a larger…

Abstract

Purpose

The novelty addressed here is undertaken by using tailor-made and fully characterized starch nanoparticles (SNPs) having a particle size ranging from 80 to 100 nm with a larger surface area, biodegradability and high reactivity as a starting substrate for cadmium ions and basic dye removal from wastewater effluent. This was done via carboxylation of SNPs with citric acid via esterification reaction using the dry preparation technique, in which a simple, energy-safe and sustainable process concerning a small amount of water, energy and toxic chemicals was used. The obtained adsorbent is designated as cross-linked esterified starch nanoparticles (CESNPs).

Design/methodology/approach

The batch technique was used to determine the CESNPs adsorption capacity, whereas atomic adsorption spectrometry was used to determine the residual cadmium ions concentration in the filtrate before and after adsorption. Different factors affecting adsorption were examined concerning pH, contact time, adsorbent dose and degree of carboxylation. Besides, to validate the esterification reaction and existence of carboxylic groups in the adsorbent, CESNPs were characterized metrologically via analytical tools for carboxyl content estimation and instrumental tools using Fourier-transform infrared spectroscopy (FTIR) spectra and scanning electron microscopy (SEM) morphological analysis.

Findings

The overall adsorption potential of CESNPs was found to be 136 mg/g when a 0.1 g adsorbent dose having 190.8 meq/100 g sample carboxyl content at pH 5 for 60 min contact time was used. Besides, increasing the degree of carboxylation of the CESNPs expressed as carboxyl content would lead to the higher adsorption capacity of cadmium ions. FTIR spectroscopy analysis elucidates the esterification reaction with the appearance of a new intense peak C=O ester at 1,700 cm−1, whereas SEM observations reveal some atomic/molecules disorder after esterification.

Originality/value

The innovation addressed here is undertaken by studying the consequence of altering the extent of carboxylation reaction expressed as carboxyl contents on the prepared CESNPs via a simple dry technique with a small amount of water, energy and toxic chemicals that were used as a sustainable bio nano polymer for cadmium ions and basic dye removal from wastewater effluent in comparison with other counterparts published in the literature.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 18 March 2022

Daniel Obregon Valencia and María R. Sun Kou

The goal of this paper is to model the activated carbon adsorption capacity of cadmium using a polynomial regression model. The properties that influence the removal of heavy…

55

Abstract

Purpose

The goal of this paper is to model the activated carbon adsorption capacity of cadmium using a polynomial regression model. The properties that influence the removal of heavy metals by activated carbon must be taken into consideration in order to synthesize materials specific to the characteristics of the pollutant.

Design/methodology/approach

Multivariable analysis applications allow a comprehensive description of the relationship between activated carbon surface properties and heavy metal adsorption.

Findings

The authors use a second-grade polynomial regression model to determine the influence of porosity and surface acidity in cadmium adsorption by activated carbon.

Originality/value

The authors propose a statistic analysis to correlate the carbon properties with its cadmium adsorption capacity. Model coefficient analysis will give a better comprehension of the influence of activated carbon porosity and surface acidity of cadmium removal.

Details

Multidiscipline Modeling in Materials and Structures, vol. 18 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 18 April 2019

J.H. Chen, P.S. Liu and W. Cheng

The purpose of this paper is to provide an investigation on a new kind of adsorbent materials, namely, the Prussian blue analog (PBA)-loaded albite-base porous ceramic foam, which…

Abstract

Purpose

The purpose of this paper is to provide an investigation on a new kind of adsorbent materials, namely, the Prussian blue analog (PBA)-loaded albite-base porous ceramic foam, which can effectively adsorb the heavy metal ion in the wastewater.

Design/methodology/approach

The natural zeolite powder has been used as the primary raw material to make a sort of porous ceramic foam by impregnating polymer foam in slurry and then sintering. Adjusting the technological parameters could control the bulk density of the ceramic product, which could float on water with the bulk density less than 1 g/cm3 and also sink in water with the bulk density higher than 1 g/cm3. After desilicating the porous ceramic foam, an Al-Fe type PBA with a strong function of ion exchange was loaded on the ceramic surface by directly yielding.

Findings

The adsorption performance for harmful metal ions was greatly improved by combining together the high adsorption capability of the PB analog and the efficient high specific surface area of the porous ceramic foam.

Originality/value

This work presents a PBA-loaded albite-base porous ceramic foam that can effectively adsorb the harmful substance in water, and the adsorption efficiency for some typical harmful ions, i.e., Cd2+, Cs+ and As(V), was examined under different conditions of the experimental period, the pH value and the ion concentration in the tested solution.

Details

Multidiscipline Modeling in Materials and Structures, vol. 15 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 5 September 2016

Maaza Lamia, Djafri Fatiha, Bouchekara Mohammed, Djebbar Mustapha and Djafri Ayada

The purpose of this paper is to examine the batch adsorption system of a cationic dye (methylene blue, widely used in various sectors) on two adsorbents; ZSM-5 zeolite which was…

Abstract

Purpose

The purpose of this paper is to examine the batch adsorption system of a cationic dye (methylene blue, widely used in various sectors) on two adsorbents; ZSM-5 zeolite which was prepared with the molar composition: 0.2057 Na2O-0.00266 Al2O3-SiO2-0.68 (pyrrolidine)-40 H2O-0.12 H2SO4.

Design/methodology/approach

By the hydrothermal synthesis method, and the purified clay and is analyzed by IR and DRX method.

Findings

For this, the authors conducted a parametric study of adsorption and effect of several important parameters on the adsorption of BM on the material used, in particular, the contact time (equilibrium is established after 120 min), different concentrations of adsorbents, different masses, the pH and temperature. The experiments demonstrated the crucial role of these parameters. A kinetic study was done and kinetic models were applied to the experimental results such as the pseudo-first order, pseudo-second order.

Originality/value

This work is original.

Details

International Journal of Clothing Science and Technology, vol. 28 no. 5
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 6 November 2017

Yingyu Zhao, Zhenbin Chen, Jie Li, Zhen Liu, Donglei Liu and Zhizong Li

The purpose of the paper is to separate and purify flavonoids existed in Lamiophlomis rotata (Benth.) Kudo. by macroporous adsorption resin (MAR) mixed-bed technology.

Abstract

Purpose

The purpose of the paper is to separate and purify flavonoids existed in Lamiophlomis rotata (Benth.) Kudo. by macroporous adsorption resin (MAR) mixed-bed technology.

Design/methodology/approach

The adsorption and desorption parameters were characterized by UV-VIS spectrophotometry. The optimal MAR mixed bed was screened based on the adsorption experiments; the experiment process was investigated by the order of single, two and three MAR mixed bed separately; and the adsorption performance, which was composed by the authority of 80 per cent adsorption ratios and 20 per cent desorption ratios, was adopted to screen MAR mixed bed for flavonoids. The adsorption dynamic investigated the order of reaction first, and then the adsorption mechanism was researched further. The adsorption thermodynamic investigated the adsorption isotherm first, and then the adsorption feature was analyzed.

Findings

This research found that MAR mixed bed of LS-840 + LSD301 with mass ratio of mLS840:mLSD301 = 3:2 was the optimized combination, and the optimal conditions of the adsorption were volume V = 50 mL, time t = 6.5 h, T = 40°C. The desorption conditions were ethanol content = 70 per cent, desorption time t = 3.0 h, T = 40°C. The adsorption dynamic experimental data fitted better to the pseudo-second-order, and the intra-particle-diffusion model was more suitable for expression of the adsorption mechanism in mesopores process, whereas the homogeneous particle-diffusion model was more suitable in microspores. The adsorption was a physical and multilayer adsorption, and the adsorption driving force was disappeared as it transferred to the fourth layer.

Practical implications

Find an efficient way to separate flavonoids that useful for human’s health, which can not only utilize of plant resources effectively, but also make outstanding contributions to medical industry. It has very high economic and social value.

Originality/value

This contribution provided a new way to separate flavonoids from Lamiophlomis rotata (Benth.) Kudo. Under the optimal conditions, the adsorption rate (F) of MAR mixed bed LS-840 + LSD301 to the flavonoids was 97.81 per cent, the desorption rate (D) was 90.02 per cent and the purity of flavonoids was dramatically increased about 2.08 fold of the crude extract from 28 to 58.4 per cent, and the recovery yield of flavonoids arrived at 91.6 per cent after a circle of adsorption/desorption operation.

Details

Pigment & Resin Technology, vol. 46 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 11 July 2023

Nagla Elshemy, Hamada Mashaly and Shimaa Elhadad

This study aims to observe the coloring efficacy of graphite (G) and nano bentonite clay (BCNPs) on the adsorption of Basic Blue 5 dye from residual dye bath solution.

Abstract

Purpose

This study aims to observe the coloring efficacy of graphite (G) and nano bentonite clay (BCNPs) on the adsorption of Basic Blue 5 dye from residual dye bath solution.

Design/methodology/approach

Some factors that affected the adsorption processes were examined and found to have significant impacts on the adsorption capacity such as the initial concentration of G and/or BCNPs (Co: 40–2,320 mg/L), adsorbent bath pH (4–9), shaking time (30–150 min.) and initial dye concentration (40–200 mg/L). The adsorption mechanism of dye by using G and/or BCNPs was studied using two different models (first-pseudo order and second-pseudo order diffusion models). The equilibrium adsorption data for the dye understudy was analyzed by using four different models (Langmuir, Freundlich, Temkin modle and Dubinin–Radushkevich) models.

Findings

It has been found that the adsorption kinetics follow rather a pseudo-first-order kinetic model with a determination coefficient (R2) of 0.99117 for G and 0.98665 for BCNPs. The results indicate that the Freundlich model provides the best correlation for G with capacities q_max = 2.33116535 mg/g and R2 = 0.99588, while the Langmuir model provides the best correlation for BCNPs with R2 = 0.99074. The adsorbent elaborated from BCNPs was found to be efficient and suitable for removing basic dyes rather than G from aqueous solutions due to its availability, good adsorption capability, as well as low-cost preparation.

Research limitations/implications

There is no research limitation for this work. Basic Blue 5 dye graphite (G) and nano bentonite clay (BCNPs) were used.

Practical implications

This work has practical applications for the textile industry. It is concluded that using graphite and nano bentonite clay can be a possible alternative to adsorb residual dye from dye bath solution and can make the process greener.

Social implications

Socially, it has a good impact on the ecosystem and global community because the residual dye does not contain any carcinogenic materials.

Originality/value

The work is original and contains value-added products for the textile industry and other confederate fields.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 13 November 2019

Hossam Altaher, Yehia H. Magdy and Anwar F. Al Yaqout

The disposal of wastewater containing silver is an environmental concern. Due to the toxicity of silver, treatment of such wastewater is necessary. Real wastewater contains a…

Abstract

Purpose

The disposal of wastewater containing silver is an environmental concern. Due to the toxicity of silver, treatment of such wastewater is necessary. Real wastewater contains a complex matrix of pollutants. The purpose of this paper is to study the adsorption behavior of silver in single and binary systems (with nickel) onto granular activated carbon.

Design/methodology/approach

The effect of silver ions concentration and the mass of adsorbent on the adsorption behavior were analyzed. Five two-parameter isotherms (Langmuir, Elovich, Freundlich, Dubinin–Radushkevich and Temkin) were applied to investigate the adsorption mechanism. Both linear and nonlinear regressions were tested for the first three isotherms. The experimental data were also fitted to Redlich–Petersons, Sips and Toth models.

Findings

A direct relationship between the initial silver ion concentration and its adsorption capacity was observed, whereas an inverse relationship between the adsorbent mass and the adsorption capacity was documented. The Langmuir model was found to best-fit the data indicating monolayer adsorption behavior. The maximum uptake was 2,500 mg/g in the single adsorption system. This value decreased to 909 mg/g in the binary system. The adsorption was found to have an exothermic chemical nature.

Originality/value

The study of the silver adsorption in a single system is inaccurate. Real wastewater contains a complex matrix of pollutants. This research gives a clear insight into the adsorption behavior in binary systems.

Details

World Journal of Science, Technology and Sustainable Development, vol. 17 no. 2
Type: Research Article
ISSN: 2042-5945

Keywords

Article
Publication date: 1 May 2001

R. Saravanane, T. Sundararajan and S. Sivamurthy Reddy

The removal efficiency of lead [Pb(II)], zinc [Zn(II)], nickel [Ni(II)] and chromium [Cr(VI)] from aqueous solutions by adsorption on non‐conventional materials (rice husk and…

Abstract

The removal efficiency of lead [Pb(II)], zinc [Zn(II)], nickel [Ni(II)] and chromium [Cr(VI)] from aqueous solutions by adsorption on non‐conventional materials (rice husk and sawdust) in its natural form and on their chemically modified form is presented. It is found that adsorption potential varies as a function of contact time, concentration, particle size, pH and flow rate. Of all the low cost adsorbents used in this study, sawdust is found to possess greater adsorption efficiency for all metals than rice husk under identical experimental conditions. Chemically activated sawdust could remove 95 percent of Pb(II), 93 percent of Zn(II), 80 percent of Ni(II) and 75 percent of Cr(VI) from the metal bearing industrial effluents.

Details

Environmental Management and Health, vol. 12 no. 2
Type: Research Article
ISSN: 0956-6163

Keywords

Article
Publication date: 28 February 2023

O.A. Elhefnawy and A.A. Elabd

The purpose of this study is to prepare a new adsorbent activated carbon immobilized on polystyrene (ACPS) for uranium (VI) and thorium (IV) removal from an aqueous solution…

Abstract

Purpose

The purpose of this study is to prepare a new adsorbent activated carbon immobilized on polystyrene (ACPS) for uranium (VI) and thorium (IV) removal from an aqueous solution. Activated carbon (AC) was derived from biochar material by chemical activation to increase the active sites on its surface and enhance the adsorption capacity. Activated carbon (AC) was immobilized on polystyrene (PS) to improve the physical properties and facilitate separation from the working solution. A feasibility study for the adsorption of uranium (VI) and thorium (IV) on the new adsorbent (ACPS) has been achieved. Adsorption kinetics, isotherms, and thermodynamics models of the adsorption process were used to describe the reaction mechanism.

Design/methodology/approach

Activated carbon was synthesized from biochar charcoal by 2 M H2SO4. Activated carbon was immobilized on the pretreatment polystyrene by hydrothermal process forming new adsorbent (ACPS). Characterization studies were carried out by scanning electron microscope, energy-dispersive X-ray spectrometer, infrared spectroscopy and X-ray diffraction techniques. Different factors affect the adsorption process as pH, contact time, solid/liquid ratio, initial concentration and temperature. The adsorption mechanism was explained according to kinetic, isothermal and thermodynamic studies. Also, the regeneration of spent ACPS was studied.

Findings

The experimental results showed that pH and equilibrium time of the best adsorption were 6.0 and 60 min for U(VI), 4.0 and 90 min for Th(IV), (pHPZC = 3.4). The experimental results fit well with pseudo-second order, Freundlich and Dubinin–Radushkevich models proving the chemisorption and heterogenous adsorption reaction. Adsorption thermodynamics demonstrated that the adsorption process is exothermic and has random nature of the solid/liquid interface. In addition, the regeneration of spent ACPS research showed that the adsorbent has good chemical stability. According to the comparative study, ACPS shows higher adsorption capacities of U(VI) and Th(IV) than other previous bio-adsorbents.

Originality/value

This study was conducted to improve the chemical and physical properties of bio-charcoal purchased from the local market to activated carbon by hydrothermal method. Activated carbon was immobilized on polystyrene forming new adsorbent ACPS for eliminating U(VI) and Th(IV) from aqueous solutions.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 17 August 2018

XuDong Wang, Zhenbin Chen, Jiapeng Long, Chenglong Duan and Xueyan Du

The purpose of this paper is to separate and purify flavonoids from glycyrrhiza by macroporous adsorption resin (MAR) mixed-bed technology.

Abstract

Purpose

The purpose of this paper is to separate and purify flavonoids from glycyrrhiza by macroporous adsorption resin (MAR) mixed-bed technology.

Design/methodology/approach

The adsorption performance of MAR and MAR mixed bed for flavonoids was studied using ultraviolet-visible spectrophotometry.

Findings

The research shows that the MAR mixed bed of LZ-50+LZ-59 with a mass ratio of LZ-50:LZ-59(m:m) = 1:1 was the optimized combination with the optimal conditions of adsorption (pH = 6, T = 45°C) and desorption (liquid ratio R = 70%, T = 50°C, pH = 8) obtained, relatively.

Originality/value

This paper provides a novel way to separate flavonoids from glycyrrhiza. Under the optimal conditions, the adsorption rate (F) of MAR mixed-bed LZ-50+LZ-59 to the flavonoids was 62.5 per cent/g, the desorption rate (D) was 89.23 per cent and the purity was achieved at 80 per cent.

Details

Pigment & Resin Technology, vol. 47 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 10 of 142