Search results

1 – 10 of 10
Open Access
Article
Publication date: 4 May 2021

Nadeem Ahmad, Sirajuddin Ahmed, Viola Vambol and Sergij Vambol

All those effluent streams having compromised characteristics pose negative effects on the environment either directly or indirectly. Health care facilities and hospitals also…

1540

Abstract

Purpose

All those effluent streams having compromised characteristics pose negative effects on the environment either directly or indirectly. Health care facilities and hospitals also generate a large amount of effluent like other industries containing harmful and toxic pharmaceutical residual compounds due to uncontrolled use of drugs, besides others. The occurrence of antibiotic in the environment is of utmost concern due to development of resistant genes. These get mixed up with ground and surface water due to lack of proper treatment of hospital wastewater. The effect of pharmaceutical compounds on human society and ecosystem as a whole is quite obvious. There are no strict laws regarding discharge of hospital effluent in many countries. Contrary to this, the authors do not have appropriate treatment facilities and solution to solve day by day increasing complexity of this problem. Moreover, water discharged from different health facilities having variable concentration often gets mixed with municipal sewage, thus remains partially untreated even after passing from conventional treatment plants. The purpose of this paper is to highlight the occurrences and fate of such harmful compounds, need of proper effluent management system as well as conventionally adopted treatment technologies nowadays all around the globe. This mini-review would introduce the subject, the need of the study, the motivation for the study, aim, objectives of the research and methodology to be adopted for such a study.

Design/methodology/approach

Hospital effluents consisting of pathogens, fecal coliforms, Escherichia coli, etc, including phenols, detergents, toxic elements like cyanide and heavy metals such as copper (Cu), iron (Fe), gadolinium (Gd), nickel (Ni), platinum (Pt), among others are commonly detected nowadays. These unwanted compounds along with emerging pollutants are generally not being regulated before getting discharged caused and spread of diseases. Various chemical and biological characteristics of hospital effluents are assessed keeping in the view the threat posed to ecosystem. Several research studies have been done and few are ongoing to explore the different characteristics and compositions of these effluent streams in comparison so as to suggest the suitable conventional treatment techniques and ways to manage the problem. Several antibiotic groups such as ciprofloxacin, ofloxacin, sulfa pyridine, trimethoprim, metronidazole and their metabolites are reported in higher concentration in hospital effluent. The aquatic system also receives a high concentration of pharmaceutical residues more than 14,000 μg/L from treatment plants also and other surface water or even drinking water in Indian cities. Many rivers in southern parts of India receives treated water have detected high concentration drugs and its metabolites. As far as global constraints that need to be discussed, there are only selected pharmaceuticals compounds generally analyzed, issue regarding management and detection based on method of sampling, frequency of analysis and observation, spatial as well as temporal concentration of these concerned micropollutants, accuracy in detecting these compounds, reliability of results and predictions, prioritization and the method of treatment in use for such type of wastewater stream. The complexity of management and treatment as well need to be addressed with following issues at priority: composition and characterization of effluent, compatible and efficient treatment technology that needs to be adopted and the environment risk posed by them. The problem of drugs and its residues was not seen to be reported in latter part of 20th century, but it might be reported locally in some part of globe. This paper covers some aspect about the disposal and regulatory standard around the world toward hospital effluent discharge, its managements and treatment technologies that are adopted and best suitable nowadays various industries and monitoring the efficiencies of existing treatment systems. This mini-review would introduce the subject, the need, the motivation and objectives of the study and methodology can be adopted for such a study.

Findings

The compiled review gives a complete view about the types of antibiotics used in different health care facilities, their residue formation, occurrences in different ecosystems, types of regulations or laws available in different counties related to disposal, different type of treatment technologies, innovative combined treatment schemes and future action needed to tackle such type of effluent after its generation. The thesis also highlights the use of certain innovative materials use for the treatment like nanoparticles. It also discusses about the residues impact on the human health as well as their bioaccumulative nature. If the authors relate the past to the current scenario of pharmaceutical compounds (PhACs) in the environment, the authors will certainly notice that many diseases are nowadays not curable by simple previously prescribed Ab. Many research projects have been done in European countries that have shown the risk of such residues like Pills, Sibell, Poseidon, No pills, Neptune, Knappe, Endetech, etc. In the previous section, it was mentioned that there are no stringent laws for hospital wastewater and in many countries, they are mixed with domestic wastewater. Many difficulties are there with this research due to complex analysis, detection of targeted Ab, affecting waterbodies rate of flow, nature of treatment varies with season to season. The way nature is being degraded and harmful effect are being imposed, it is important to take immediate and decisive steps in this area. Wastewater treatment plants (WWTPs) serves as a nursery for antibiotic-resistant systems, hence monitoring with great attention is also needed. Many trials with different treatment process, in combination, were considered. Many countries are paying great attention to this topic by considering the severity of the risk involved in it.

Research limitations/implications

Previous studies by several scientists show that the pharmaceutical residues in the discharged effluent displayed direct toxic effects, and sometimes, detrimental effects in the mixture were also observed. The discharge of untreated effluent from hospitals and pharmaceuticals and personal care products in the natural ecosystem poses a significant threat to human beings. The pharmaceuticals, like antibiotics, in the aquatic environment, accelerate the development of the antibiotic-resistant genes in bacteria, which causes fatal health risks to animals and human beings. Others, like analgesics, are known to affect development in fishes. They also degrade the water quality and may lead to DNA damage, toxicity in lower organisms like daphnia and have the potential to bioaccumulate. A few commonly used nanoadsorbents for water and wastewater treatment along with their specific properties can also be used. The main advantages of them are high adsorption capacity and superior efficiency, their high reusability, synthesis at room temperatures, super magnetism, quantum confinement effect as well as eco-toxicity. This review will focus on the applicability of different nanoscale materials and their uses in treating wastewater polluted by organic and inorganic compounds, heavy metals, bacteria and viruses. Moreover, the use of various nanoadsorbents and nano-based filtration membranes is also examined.

Practical implications

A number of different pharmaceutical residues derived from various activities like production facilities, domestic use and hospitals have been reported earlier to be present in groundwater, effluents and rivers, they include antibiotics, psycho-actives, analgesics, illicit drugs, antihistamine, etc. In past few years environmental scientists are more concerned toward the effluents generated from medical care facilities, community health centers and hospitals. Various chemical and biological characteristics of hospital effluents have been assessed keeping in the view the common threats pose by them to the entire ecosystem. In this study, seven multispecialty hospitals with nonidentical pretreatment were selected for three aspects i.e. conventional wastewater characteristics, high priority pharmaceuticals and microbial analyses. The present work is to evaluate efficacy of advanced wastewater treatment methods with regard to removal of these three aspects from hospital effluents before discharge into a sewage treatment plant (STP). Based on test results, two out of seven treatment technologies, i.e. MBR and CW effectively reducing conventional parameters and pharmaceuticals from secondary and tertiary treatments except regeneration of microbes were observed in tertiary level by these two treatments.

Social implications

This review has aimed to identify the emerging contaminants, including pharmaceutical residues, highly consumed chemicals that are present in the hospital effluent, along with their physicochemical and biological characteristics. In this, the main objective was to review the occurrences and fate of common drugs and antibiotics present in effluents from hospital wastewaters. As far as global constraints that need to be discussed, there are only selected pharmaceuticals compounds generally analyzed, issue regarding management and detection based on method of sampling, frequency of analysis and observation, spatial as well as temporal concentration of these concerned micropollutants, accuracy in detecting these compounds, reliability of results and predictions, prioritization and the method of treatment in use for such type of wastewater stream are among the major issues (Akter et al., 2012; Ashfaq et al., 2016; García-Mateos et al., 2015; Liu et al., 2014; Mubedi et al., 2013; Prabhasankar et al., 2016; Sun et al., 2016; Suriyanon et al., 2015; Wang et al., 2016; Wen et al., 2004). This paper covers some aspect about the disposal and regulatory standard around the world toward hospital effluent discharge, its managements and treatment technologies that are adopted and best suitable nowadays.

Originality/value

This study many multispecialty hospitals with nonidentical pretreatment were selected for three aspects i.e. conventional wastewater characteristics high priority pharmaceuticals and microbial analyses. The present work is to evaluate efficacy of advanced wastewater treatment methods with regard to removal of these three aspects from hospital effluents before discharge into an STP. Based on test results, two out of different treatment effectively reducing conventional parameters and pharmaceuticals from secondary and tertiary treatments except regeneration of microbes were observed in the tertiary level by these two treatments were studies followed by ozonation and ultraviolet-ray treatment.

Details

Frontiers in Engineering and Built Environment, vol. 1 no. 1
Type: Research Article
ISSN: 2634-2499

Keywords

Abstract

Purpose

In addition to agriculture, energy production, and industries, potable water plays a significant role in many fields, further increasing the demand for potable water. Purification and desalination play a major role in meeting the need for clean drinking water. Clean water is necessary in different areas, such as agriculture, industry, food industries, energy generation and in everyday chores.

Design/methodology/approach

The authors have used the different search engines like Google Scholar, Web of Science, Scopus and PubMed to find the relevant articles and prepared this mini review.

Findings

The various stages of water purification include coagulation and flocculation, coagulation, sedimentation and disinfection, which have been discussed in this mini review. Using nanotechnology in wastewater purification plants can minimize the cost of wastewater treatment plants by combining several conventional procedures into a single package.

Social implications

In society, we need to avail clean water to meet our everyday, industrial and agricultural needs. Purification of grey water can meet the clean water scarcity and make the environment sustainable.

Originality/value

This mini review will encourage the researchers to find out ways in water remediation to meet the need of pure water in our planet and maintain sustainability.

Details

Arab Gulf Journal of Scientific Research, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1985-9899

Keywords

Open Access
Article
Publication date: 15 March 2022

Mehrshad Mehrpouya, Daniel Tuma, Tom Vaneker, Mohamadreza Afrasiabi, Markus Bambach and Ian Gibson

This study aims to provide a comprehensive overview of the current state of the art in powder bed fusion (PBF) techniques for additive manufacturing of multiple materials. It…

6566

Abstract

Purpose

This study aims to provide a comprehensive overview of the current state of the art in powder bed fusion (PBF) techniques for additive manufacturing of multiple materials. It reviews the emerging technologies in PBF multimaterial printing and summarizes the latest simulation approaches for modeling them. The topic of “multimaterial PBF techniques” is still very new, undeveloped, and of interest to academia and industry on many levels.

Design/methodology/approach

This is a review paper. The study approach was to carefully search for and investigate notable works and peer-reviewed publications concerning multimaterial three-dimensional printing using PBF techniques. The current methodologies, as well as their advantages and disadvantages, are cross-compared through a systematic review.

Findings

The results show that the development of multimaterial PBF techniques is still in its infancy as many fundamental “research” questions have yet to be addressed before production. Experimentation has many limitations and is costly; therefore, modeling and simulation can be very helpful and is, of course, possible; however, it is heavily dependent on the material data and computational power, so it needs further development in future studies.

Originality/value

This work investigates the multimaterial PBF techniques and discusses the novel printing methods with practical examples. Our literature survey revealed that the number of accounts on the predictive modeling of stresses and optimizing laser scan strategies in multimaterial PBF is low with a (very) limited range of applications. To facilitate future developments in this direction, the key information of the simulation efforts and the state-of-the-art computational models of multimaterial PBF are provided.

Details

Rapid Prototyping Journal, vol. 28 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 4 January 2021

Radosław Wajman

Crystallization is the process widely used for components separation and solids purification. The systems for crystallization process evaluation applied so far, involve numerous…

2417

Abstract

Purpose

Crystallization is the process widely used for components separation and solids purification. The systems for crystallization process evaluation applied so far, involve numerous non-invasive tomographic measurement techniques which suffers from some reported problems. The purpose of this paper is to show the abilities of three-dimensional Electrical Capacitance Tomography (3D ECT) in the context of non-invasive and non-intrusive visualization of crystallization processes. Multiple aspects and problems of ECT imaging, as well as the computer model design to work with the high relative permittivity liquids, have been pointed out.

Design/methodology/approach

To design the most efficient (from a mechanical and electrical point of view) 3D ECT sensor structure, the high-precise impedance meter was applied. The three types of sensor were designed, built, and tested. To meet the new concept requirements, the dedicated ECT device has been constructed.

Findings

It has been shown that the ECT technique can be applied to the diagnosis of crystallization. The crystals distribution can be identified using this technique. The achieved measurement resolution allows detecting the localization of crystals. The usage of stabilized electrodes improves the sensitivity of the sensor and provides the images better suitable for further analysis.

Originality/value

The dedicated 3D ECT sensor construction has been proposed to increase its sensitivity in the border area, where the crystals grow. Regarding this feature, some new algorithms for the potential field distribution and the sensitivity matrix calculation have been developed. The adaptation of the iterative 3D image reconstruction process has also been described.

Details

Sensor Review, vol. 41 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Open Access
Article
Publication date: 14 March 2024

Chongjun Wu, Yutian Chen, Xinyi Wei, Junhao Xu and Dongliu Li

This paper is devoted to prepare micro-cone structure with variable cross-section size by Stereo Lithography Appearance (SLA)-based 3D additive manufacturing technology. It is…

Abstract

Purpose

This paper is devoted to prepare micro-cone structure with variable cross-section size by Stereo Lithography Appearance (SLA)-based 3D additive manufacturing technology. It is mainly focused on analyzing the forming mechanism of equipment and factors affecting the forming quality and accuracy, investigating the influence of forming process parameters on the printing quality and optimization of the printing quality. This study is expected to provide a µ-SLA surface preparation technology and process parameters selection with low cost, high precision and short preparation period for microstructure forming.

Design/methodology/approach

The µ-SLA process is optimized based on the variable cross-section micro-cone structure printing. Multi-index analysis method was used to analyze the influence of process parameters. The process parameter influencing order is determined and validated with flawless micro array structure.

Findings

After the optimization analysis of the top diameter size, the bottom diameter size and the overall height, the influence order of the printing process parameters on the quality of the micro-cone forming is: exposure time (B), print layer thickness (A) and number of vibrations (C). The optimal scheme is A1B3C1, that is, the layer thickness of 5 µm, the exposure time of 3000 ms and the vibration of 64x. At this time, the cone structure with the bottom diameter of 50 µm and the cone angle of 5° could obtain a better surface structure.

Originality/value

This study is expected to provide a µ-SLA surface preparation technology and process parameters selection with low cost, high precision and short preparation period for microstructure forming.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Open Access
Article
Publication date: 18 June 2021

Supakorn Tultrairatana and Phenphop Phansuea

The purpose of this article was to investigate the relationship between symptoms related to air pollution, mask-wearing, mask choices and related factors.

1474

Abstract

Purpose

The purpose of this article was to investigate the relationship between symptoms related to air pollution, mask-wearing, mask choices and related factors.

Design/methodology/approach

A cross-sectional study among outpatient department (OPD) pollution clinic patients at Nopparat Rajathanee Hospital (PCNRH) during 2019 in Bangkok, Thailand.

Findings

The most common symptom after exposure to air pollution that affects treatment in the OPD is respiratory symptoms. A total of 45.7% (107/234) of the population wears a mask, 55.1% (59/107) of the population that wears a mask wears a surgical mask, and only 10.3% (11/107) of them wear an N95 mask. Mask-wearing and air quality index (AQI) onset were associated with the respiratory symptoms group, whereas wearing an N95 mask or surgical mask was found to be a protective factor for the occurrence of respiratory symptoms (adjusted OR = 0.065, 95% CI: 0.014–0.306, p = 0.001 and adjusted OR = 0.154, 95% CI: 0.058–0.404, p < 0.001, respectively). Therefore, the best practice in the face of air pollution, while the resolution needs a long period, is to wear a mask. In this study, the results showed that the best type of mask to prevent respiratory symptoms from air pollution is the N95, followed by the surgical mask; cloth masks are not recommended to use to protect against respiratory symptoms from air pollution.

Research limitations/implications

Wearing an N95 and a surgical mask can help reduce respiratory symptoms. Hence, in addition to establishing hospital measures, cooperation from local and government agencies is necessary to effectively and jointly build a national health public policy framework.

Originality/value

1. This study provides evidence of a correlation between symptoms associated with air pollution and related factors, in-hospital visits in Bangkok, Thailand. 2. In this study, wearing an N95 mask and a surgical mask were found to be a protective factor for the occurrence of respiratory symptoms.

Details

Journal of Health Research, vol. 36 no. 6
Type: Research Article
ISSN: 0857-4421

Keywords

Open Access
Article
Publication date: 15 August 2016

Belen Begines, Andrew L. Hook, Morgan R. Alexander, Christopher J. Tuck and Ricky D. Wildman

This paper aims to print 3D structures from polymers that resist bacterial attachment by reactive jetting of acrylate monomers.

2438

Abstract

Purpose

This paper aims to print 3D structures from polymers that resist bacterial attachment by reactive jetting of acrylate monomers.

Design/methodology/approach

The first step towards printing was ink development. Inks were characterised to carry out an estimation of their potential printability using the Z parameter to predict stable jetting conditions. Printability conditions were optimised for each ink using a Dimatix DMP-2800, which enabled 3D structures to be fabricated.

Findings

UV photo-initiated polymers, which resist bacterial attachment, were found to be printable using piezo-based inkjet printers. The waveform required for each ink depends on the value of the Z parameter. Once the waveform and the printability parameters were optimised, 3D objects were fabricated.

Research limitations/implications

This methodology has been confirmed as an effective method to 3D print materials that have been demonstrated to be bacteria resistant. However, ink curing depends on modification of some parameters (such as photoinitiator concentration or UV exposure time) which would result in an improvement of the curing process post jetting.

Social implications

The combination of inkjet based 3D printing with new materials resistant to bacterial attachment means the possibility of building customised medical devices with a high level of complexity and bespoke features can be fully realised. The scope and variability of the devices produced will exceed what can be achieved using standard fabrication methodologies and can be applied to reduce the incidence of device associated infections and to address increased morbidity, mortality and health care costs associated with nosocomial infections.

Originality/value

In this paper, the novel use of materials that resist bacterial attachment has been described to build 3D structures using material jetting. Its value lies on the potential impact this methodology could produce in the biomedical device and research fields.

Details

Rapid Prototyping Journal, vol. 22 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 8 March 2024

Antonio Botti and Giovanni Baldi

This research delves into the realm of Business Model Innovation (BMI), integrating it with the human-centric, sustainable, and resilient principles of Industry 5.0, proposing a…

Abstract

Purpose

This research delves into the realm of Business Model Innovation (BMI), integrating it with the human-centric, sustainable, and resilient principles of Industry 5.0, proposing a new theoretical framework.

Design/methodology/approach

An abductive approach has been chosen to expand existing knowledge developing new ideas based on emerging phenomena. Data were gathered via semi-structured interviews with directors, managers and curators of public institutions in Italy, Switzerland, Germany and Spain encompassing Galleries, Libraries, Archives, and Museums (GLAM). These data were subsequently subjected to thematic analysis.

Findings

The findings indicate that the main enablers for Business Model Innovation (BMI) in combination with Industry 5.0 encompassed stakeholder, customer and organizational engagement, collaborative environment, knowledge and innovation management, and sustainability. These drivers were effectively leveraged through three pivotal facilitators-inhibitors: technology, resources, and leadership.

Research limitations/implications

The principal constraints are rooted in the narrow contextual focus and the limited participants number. However, upcoming research efforts may broaden the horizons of this multifaceted and extensive investigation.

Originality/value

This study is groundbreaking as it fills a significant gap in the existing literature by integrating Business Model Innovation (BMI) with the Industry 5.0 paradigm, a novel approach that has not been explored previously. Additionally, the inclusion of GLAM institutions in this research adds a unique dimension, as they have been largely overlooked in both research domains.

Details

European Journal of Innovation Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1460-1060

Keywords

Open Access
Article
Publication date: 28 July 2020

Julián Monsalve-Pulido, Jose Aguilar, Edwin Montoya and Camilo Salazar

This article proposes an architecture of an intelligent and autonomous recommendation system to be applied to any virtual learning environment, with the objective of efficiently…

1882

Abstract

This article proposes an architecture of an intelligent and autonomous recommendation system to be applied to any virtual learning environment, with the objective of efficiently recommending digital resources. The paper presents the architectural details of the intelligent and autonomous dimensions of the recommendation system. The paper describes a hybrid recommendation model that orchestrates and manages the available information and the specific recommendation needs, in order to determine the recommendation algorithms to be used. The hybrid model allows the integration of the approaches based on collaborative filter, content or knowledge. In the architecture, information is extracted from four sources: the context, the students, the course and the digital resources, identifying variables, such as individual learning styles, socioeconomic information, connection characteristics, location, etc. Tests were carried out for the creation of an academic course, in order to analyse the intelligent and autonomous capabilities of the architecture.

Details

Applied Computing and Informatics, vol. 20 no. 1/2
Type: Research Article
ISSN: 2634-1964

Keywords

Open Access
Article
Publication date: 26 July 2023

Fong Yew Leong, Dax Enshan Koh, Wei-Bin Ewe and Jian Feng Kong

This study aims to assess the use of variational quantum imaginary time evolution for solving partial differential equations using real-amplitude ansätze with full circular…

1112

Abstract

Purpose

This study aims to assess the use of variational quantum imaginary time evolution for solving partial differential equations using real-amplitude ansätze with full circular entangling layers. A graphical mapping technique for encoding impulse functions is also proposed.

Design/methodology/approach

The Smoluchowski equation, including the Derjaguin–Landau–Verwey–Overbeek potential energy, is solved to simulate colloidal deposition on a planar wall. The performance of different types of entangling layers and over-parameterization is evaluated.

Findings

Colloidal transport can be modelled adequately with variational quantum simulations. Full circular entangling layers with real-amplitude ansätze lead to higher-fidelity solutions. In most cases, the proposed graphical mapping technique requires only a single bit-flip with a parametric gate. Over-parameterization is necessary to satisfy certain physical boundary conditions, and higher-order time-stepping reduces norm errors.

Practical implications

Variational quantum simulation can solve partial differential equations using near-term quantum devices. The proposed graphical mapping technique could potentially aid quantum simulations for certain applications.

Originality/value

This study shows a concrete application of variational quantum simulation methods in solving practically relevant partial differential equations. It also provides insight into the performance of different types of entangling layers and over-parameterization. The proposed graphical mapping technique could be valuable for quantum simulation implementations. The findings contribute to the growing body of research on using variational quantum simulations for solving partial differential equations.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 10