Search results

1 – 10 of over 8000
Article
Publication date: 13 April 2010

R.L. Xu, Y.C. Liu, C. Wei and L.M. Yu

The interfacial structure is vitally important for achieving a good joint reliability during service. The purpose of this paper is to systematically explore the effects of Zn…

Abstract

Purpose

The interfacial structure is vitally important for achieving a good joint reliability during service. The purpose of this paper is to systematically explore the effects of Zn addition into the Sn-3.5Ag eutectic solder on the formation of intermetallic compound (IMC) layer at the interface between Sn-3.5Ag-xZn (x = 0, 0.9 and 3) solders and Cu pad.

Design/methodology/approach

To obtain useful information on the formation of interfacial structure and to determine an effective way to avoid the formation of brittle joints, a series of Sn-Ag lead-free solders with different Zn contents were prepared and soldered. To investigate the IMC layers between Sn-3.5Ag-xZn (x = 0, 0.9 and 3) lead-free solders and the Cu pads, three specimens of the Sn-3.5Ag-xZn/Cu were soldered at 250°C for one min.

Findings

It is found that the addition of Zn in the Sn-3.5Ag eutectic solder can prompt the formation of Cu5Zn8 IMCs, and restrain the formation of the Cu6Sn5 IMCs. Moreover, the addition of Zn in the Sn-3.5Ag eutectic solder will reduce the solubility of Cu in the liquid solder, which accelerates the growth of the formed IMCs. Consequently, the thickness of IMC layer increases with increasing the content of Zn.

Originality/value

This paper usefully demonstrates how the addition of Zn favoured the formation of the Cu5Zn8 phase and restrained the formation of the Cu6Sn5 phase. Moreover, the addition of Zn in the Sn-Ag eutectic solder would reduce the solubility of Cu in the liquid solder, which accelerates the growth of the formed IMCs. Consequently, the thickness of the IMC layer increased with increasing concentration of Zn.

Details

Soldering & Surface Mount Technology, vol. 22 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 13 April 2015

Spyros Papaefthymiou, Constantinos Goulas and Vasiliki Panteleakou

Identification of the critical process conditions that enhance Cu diffusion in ferrite grain boundaries and promote precipitation of Cu-rich particles in the proximity of steel…

176

Abstract

Purpose

Identification of the critical process conditions that enhance Cu diffusion in ferrite grain boundaries and promote precipitation of Cu-rich particles in the proximity of steel semi-finished products surface is crucial for every steel maker as it leads to the creation of hot shortness cracks in final products deteriorating surface condition. The purpose of this paper is to reveal the possible effect of Cu segregation in the metal/oxide interface, its role in surface crack initiation and, finally, to propose actions to prevent from hot shortness issues throughout the production chain of steel products.

Design/methodology/approach

The here presented study was based on S355 steel plate production starting from re-melting of scrap in an EAF, followed by metallurgical treatment in a Ladle Furnace, continuous casting, re-heating (RH) and thermo-mechanical rolling in a reversing mill. For the purposes of this study, more than ten heats, 100 t of steel each, were analyzed. Here presented are depicted steels in the high and low end of the permitted Cu-wt-% spectrum, 0.4 wt-% Cu (0.15 wt-% C, 1.1 wt-% Mn, VTi micro-alloyed steel) and 0.25 wt-% Cu (0.09 wt-% C, 1.2 wt-% Mn, NbTi micro alloyed steel), respectively.

Findings

Although Cu levels of 0.25-0.40 wt-% are well below the Cu solubility in austenite and ferrite (8 percent wt-% and 3 wt-% Cu, respectively) and within specifications, precipitation of Cu-rich particles is observed in industrial semi-finished and/or final products. Cu-rich precipitates and Cu segregation along grain boundaries near the steel surface lead to hot shortness cracks in industrial products.

Research limitations/implications

Hot shortness surface defects related to Cu presence in steel having significantly lower Cu amounts than its maximum solubility in austenite and ferrite does not make sense in first place. Correctly, Cu is expected to remain in solid solution. Identification of Cu-rich particles is explained on the basis of the development of double diffusion actions: interstitial diffusion of carbon (decarburization) and substitution diffusion of copper. Root cause analysis and reliable countermeasures will save financial and material resources during steel production.

Originality/value

Automobile scrap re-melting results in noticeable Cu amounts in EAF produced steel. Presence of Cu-rich particles in grain boundaries near the surface of intermediate or final products deteriorates surface quality through relevant surface defects. Identification of Cu-rich particles is explained on the basis of the development of double diffusion actions: interstitial diffusion of carbon and substitution diffusion of copper. Pre condition for metallic Cu precipitation in ferrite is the Cu amount to be above 3 wt-%, which is ten times higher than the usual permitted Cu amount in such steel grades. This pre-condition is met through austenite oxidation during RH.

Details

International Journal of Structural Integrity, vol. 6 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 1 August 2003

K.C. Chan, Z.W. Zhong and K.W. Ong

The elimination of lead from solders for flip‐chip attachment has necessitated many new studies on the reliability of the resultant systems. There are many lead‐free solder…

Abstract

The elimination of lead from solders for flip‐chip attachment has necessitated many new studies on the reliability of the resultant systems. There are many lead‐free solder material systems. However, most of them contain a large proportion of tin. The tin in the solder reacts with the copper layer present in some types of under bump metallisation (UBM) depleting the UBM of copper, and thereby causing loss of adhesion and a weak interface. In this work, the relative reliability of Cr/Cu/Cu and Cr/Cu/Cu/Ni UBM systems was studied. The UBM systems were deposited with an electroplated Sn‐3.5Ag lead‐free solder alloy. The results conclusively showed that the Cr/Cu/Cu/Ni UBM system is a better choice for the Sn‐3.5Ag lead‐free solder. In the Cr/Cu/Cu/Ni UBM system, the thickness of the nickel layer was found to be an important parameter. Multiple reflow and high temperature storage test results showed that serious depletion of the UBM layer could occur if the UBM layers were not optimised. The thermo‐mechanical reliability of Ni‐based UBM bumps showed promising results up to 1,500 temperature cycling.

Details

Soldering & Surface Mount Technology, vol. 15 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 1 December 1998

Se‐Young Jang and Kyung‐Wook Paik

In flip‐chip interconnection on organic substrates using eutectic tin/lead solder bumps, a highly reliable under bump metallurgy (UBM) is required to maintain adhesion and solder…

Abstract

In flip‐chip interconnection on organic substrates using eutectic tin/lead solder bumps, a highly reliable under bump metallurgy (UBM) is required to maintain adhesion and solder wettability. Various UBM systems such as 1μm Al/0.2μm Ti/5μm Cu, 1μm Al/02μm Ti/1μm Cu, 1μm Al/0.2μm Ni/1μm Cu and 1μm Al/0.2μm Pd/1μm Cu, applied under eutectic tin/lead solder bumps, have been investigated with regard to their interfacial reactions and adhesion properties. The effects of the number of solder reflow cycles and the aging time on the growth of intermetallic compounds (IMCs) and on the solder ball shear strength were investigated. Good ball shear strength was obtained with 1μm Al/0.2μm Ti5μm Cu and 1μm Al/0.2μm Ni/1μm Cu even after four solder reflows or seven‐day aging at 150∞C. In contrast, 1μm Al/0.2μm Ti/1μm Cu and 1μm Al/0.2μm Pd/1μm Cu showed poor ball shear strength. The decrease of the shear strength was mainly due to the direct contact between solder and non‐wettable metals such as Ti and AL, resulting in a delamination. In this case, thin 1μm Cu and 0.2μm Pd diffusion barrier layers were completely consumed by Cu‐Sn and Pd‐Sn reaction.

Details

Soldering & Surface Mount Technology, vol. 10 no. 3
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 13 April 2015

Yujuan Zhang, Yaohua Xu, Yuangbin Yang, Shengmao Zhang, Pingyu Zhang and Zhijun Zhang

The purpose of this paper is to synthesize oil-soluble copper (Cu) nanoparticles modified with free phosphorus and sulfur modifier and investigate its tribological properties as…

Abstract

Purpose

The purpose of this paper is to synthesize oil-soluble copper (Cu) nanoparticles modified with free phosphorus and sulfur modifier and investigate its tribological properties as environment-friendly lubricating oil additives.

Design/methodology/approach

To improve the anti-oxidation properties of these nanoparticles, two kinds of surface modifiers, oleic acid and oleylamine were used simultaneously. The morphology, composition, structure and thermal properties of as-synthesized Cu nanoparticles were investigated by means of transmission electron microscopy, X-ray powder diffraction, Fourier transform infrared spectrometry and differential thermal and thermogravimetric analysis. The tribological properties of as-synthesized Cu nanoparticles as an additive in liquid paraffin were evaluated with a four-ball friction and wear tester.

Findings

It has been found that an as-synthesized Cu nanoparticle has a size of 2-5 nm and can be well dispersed in organic solvents. Tribological properties evaluation results show that as-synthesized Cu nanoparticles possess excellent anti-wear properties as an additive in liquid paraffin. The reason lies in that as-synthesized surface-capped Cu nanoparticles are able to deposit on sliding steel surface and form a low-shearing-strength protective layer thereon, showing promising application as an environmentally acceptable lubricating oil additive, owing to its free phosphorus and sulfur elements characteristics.

Originality/value

Oil-soluble surface-modified Cu nanoparticles without phosphorus and sulfur were synthesized and its tribological properties as lubricating oil additives were also investigated in this paper. These results could be very helpful for application of Cu nanoparticles as environment-friendly lubricating oil additives.

Details

Industrial Lubrication and Tribology, vol. 67 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 9 April 2018

Yanhong Li, TianTian Liu, Yujuan Zhang, Pingyu Zhang and Shengmao Zhang

The purpose of this paper is to study the tribological properties of Cu nanoparticles (NPs) as lubricant additives in three kinds of commercially available lubricants.

Abstract

Purpose

The purpose of this paper is to study the tribological properties of Cu nanoparticles (NPs) as lubricant additives in three kinds of commercially available lubricants.

Design/methodology/approach

A four-ball machine is used to estimate the tribological properties of Cu NPs as lubricant additives in three kinds of commercially available lubricants. Three-dimensional optical profiler and electrical contact resistance are evaluated to investigate the morphology of the worn surfaces and the influence of Cu NPs on tribofilms.

Findings

Wear tests show that the addition of Cu NPs as lubricant additives could reduce wear and increase load-carrying capacity of commercially available lubricants remarkably, indicating that Cu NPs have a good compatibility with the existing lubricant additives in commercially available lubricants.

Originality/value

The tribological properties of Cu NPs as lubricant additives in three kinds of commercially available lubricants were investigated in this paper. These results are reliable and can be very helpful for application of Cu NPs as lubricant additives in industry.

Details

Industrial Lubrication and Tribology, vol. 70 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 3 April 2017

Yan Zhu and Fenglian Sun

The purpose of this paper is to investigate the effect of geometric size on intermetallic compound (IMC) growth and elements diffusion of Cu/Sn/Cu solder joint and establish the…

Abstract

Purpose

The purpose of this paper is to investigate the effect of geometric size on intermetallic compound (IMC) growth and elements diffusion of Cu/Sn/Cu solder joint and establish the correlation model between the thickness of the IMC layer and size of the solder joint on the dozens of microns scale.

Design/methodology/approach

The sandwich-structured Cu/Sn/Cu solder joints with different gaps between two copper-clad plates (δ) are fabricated using a reflow process. The microstructure and composition of solder joints are observed and analyzed by scanning electron microscopy.

Findings

After reflow, the thickness of the IMC and Cu concentration in solder layers increase with the reduction of δ from 50, 40, 30, 20 to 10 μm. During isothermal aging, the thickness of the IMC fails to increase according to the traditional parabolic rule due to changes in Cu concentration. The reduction of δ is the root cause of changes in Cu concentration and the growth rule of the IMC layer. A correlation model between the thickness of the IMC layer and δ is established. It is found that the thickness of the IMC layer is the function of aging time and δ. With δ reducing, the main control element of IMC growth transfers from Cu to Sn.

Originality/value

This paper shows the changes of IMC thickness and elements concentration with the reduction of the size of solder joints on the dozens of microns scale. A correlation model is established to calculate the thickness of the IMC layer during aging.

Details

Soldering & Surface Mount Technology, vol. 29 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 26 August 2014

Guokui Ju, Fei Lin, Wenzhen Bi, Yongjiu Han, Wang Junjie and Xicheng Wei

The purpose of this study was to comparatively investigate interfacial intermetallic compounds (IMCs) in the Sn3.0Ag0.5Cu3.0Bi0.05Cr/Cu (SACBC/Cu) and Sn3.0Ag0.5Cu/Cu (SAC/Cu

Abstract

Purpose

The purpose of this study was to comparatively investigate interfacial intermetallic compounds (IMCs) in the Sn3.0Ag0.5Cu3.0Bi0.05Cr/Cu (SACBC/Cu) and Sn3.0Ag0.5Cu/Cu (SAC/Cu) solder joints, and to determine any differences.

Design/methodology/approach

The samples were annealed after isothermal ageing at 150°C for 0, 168 and 500 hours, and their cross-sections were observed by scanning electron microscopy and energy dispersive spectroscopy.

Findings

The interfacial IMC morphology in two joints had significant differences. For the Cu/SAC/Cu joints, the granular and short rod-like Ag3Sn particles attached on the surface and boundary of interfacial Cu6Sn5 grains were detected, and they coarsened observably with ageing time at 150°C, and lastly embedded at the grain boundaries. However, for the Cu/SACBC/Cu joints, there were tiny filamentous Ag3Sn growing on the surface of interfacial Cu6Sn5 grains, and the Ag3Sn had a tendency to break into nanoparticles, which would be distributed evenly and cover the IMC layer, profiting from the Bi and Cr precipitates from solder matrix during ageing.

Originality/value

The paper implies that the addition of Bi and Cr could affect the IMCs of joints, thereby delaying interfacial reactions between Sn and Cu atoms and improving the service reliability. The SACBC solder is a potential alloy for electronic packaging production.

Details

Soldering & Surface Mount Technology, vol. 26 no. 4
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 13 January 2021

Gui-sheng Gan, Liujie Jiang, Shiqi Chen, Yongqiang Deng, Donghua Yang, Zhaoqi Jiang, Huadong Cao, Mizhe Tian, Qianzhu Xu and Xin Liu

Low-Ag SAC solder will lead to a series of problems, such as increased the melting range and declined the solderability and so on. These research studies do not have too…

Abstract

Purpose

Low-Ag SAC solder will lead to a series of problems, such as increased the melting range and declined the solderability and so on. These research studies do not have too much impact on the improvement of solders’ performance but were difficult to achieve satisfactory results. It is urgent to develop new soldering technology to avoid the bottleneck of lead-free solder. low-temperature-stirring soldering and ultrasonic-assisted soldering was developed in the authors’ early work, but slag inclusion and pore would gather and grow up to lead decreasing of the shear strength. In this paper, Cu/SAC0307 +Zn power/Cu joints with ultrasonic-assisted at low-temperature was successfully achieved.

Design/methodology/approach

45um Zn-powder and SAC0307 No.4 solder powder were mixed to fill the Cu-Cu joint, and the content of Zn-powder were 0 and 5%, 7.5% and 10%, 12.5% and 15% respectively. During the soldering process under ambient atmosphere %252C the heating platform provided a constant 220%253 F and the ultrasonic vibrator applied a constant pressure of 4 MPa to the copper substrate. The soldering process was completed after holding 70 s at 300 W.

Findings

The Zn particles made the IMC at the joint interface and in the soldering seam from scallop-type Cu6Sn5 to flat-type Cu5Zn8. The shear strength of joints without Zn was only 12.43 MPa, the shear strength of joints with 10% Zn reached a peak of 34.25 MPa, and the shear strength of joints containing 10% Zn was 63.71% higher than that of joints without zinc particles, and then the shear strength decreased. In addition, with the increase of zinc content, the fracture mode of the joint changed from the brittle fracture of the original layered tears to the mixed tough and brittle fracture.

Originality/value

A new method that Zn micron-size powders and SAC0307 micron-size powders was mixed to fill the joint, and successfully achieved micro-joining of Cu/Cu under ultrasonic-assisted without flux at low-temperature.

Details

Soldering & Surface Mount Technology, vol. 33 no. 4
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 20 September 2011

Bo Wang, Fengshun Wu, Yiping Wu, Liping Mo and Weisheng Xia

This paper aims to investigate the microstructural evolution rules of the intermetallic compound (IMC) layers in high‐density solder interconnects with reduced stand‐off heights…

Abstract

Purpose

This paper aims to investigate the microstructural evolution rules of the intermetallic compound (IMC) layers in high‐density solder interconnects with reduced stand‐off heights (SOH).

Design/methodology/approach

Cu/Sn/Cu solder joints with 100, 50, 20 and 10 μm SOH were prepared by the same reflow process and isothermally aged at 150°C. The IMC microstructural evolution was observed using scanning electron microscopy.

Findings

The whole IMC layer (Cu3Sn + Cu6Sn5) grew faster in the solder joints with lower SOH because of the thinner IMC layer before aging. Also, the IMC proportion increased more rapidly in solder joints with the lower SOH. In all solder joints with different SOH, the growth rates of the Cu3Sn (ϵ) layers were similar, and slowed down with increasing aging time. The Cu6Sn5 (η) was consumed by the Cu3Sn (ϵ) growth at the beginning of the aging stage; while it turned to thickening after a period of aging. Finally, the Cu6Sn5 thickness was similar in all the solder joints. It is inferred that the thickness ratio of Cu3Sn to Cu6Sn5 would maintain a dynamic balance in the subsequent aging. Based on the diffusion flux ratio of Cu to Sn at the ϵ/η interface, a model has been established to explain the microstructural evolution of IMC layers in high‐density solder interconnects with reduced SOH. In the model, interfacial reactions are mainly supposed to occur at the ϵ/η interface.

Originality/value

The findings provide electronic packaging reliability engineers with an insight into IMC microstructural evolution in high‐density solder interconnects with reduced SOH.

Details

Soldering & Surface Mount Technology, vol. 23 no. 4
Type: Research Article
ISSN: 0954-0911

Keywords

1 – 10 of over 8000