Search results

1 – 10 of 22
Article
Publication date: 11 August 2023

Abdelkader Guillal and Noureddine Abdelbaki

The aim of this study is to assess the opportunity for the development of hydrocarbon transportation using high-strength steel (HSS) in pipeline construction in terms of cost…

Abstract

Purpose

The aim of this study is to assess the opportunity for the development of hydrocarbon transportation using high-strength steel (HSS) in pipeline construction in terms of cost savings and reliability.

Design/methodology/approach

Several optimizations of pipeline design and operations were performed to estimate the total life-cycle cost variation associated with different grades of high-strength steel. The generalized reduced gradient (GRG) method was used in an Excel table to determine optimal total life cycle each pipeline. Variables used in this optimization with respect to each steel grade were as follows: pipeline external diameter, wall thickness, number of compression stations and installed power in each compression station. The reliability of a pipeline with optimal cost was assessed to highlight the impact of steel grade on pipeline reliability.

Findings

The study showed that the cost reduction is strongly dependent on the adopted gas pipeline configuration. The number of compression stations and external diameter are the main factors influencing the pipeline total life cycle cost, while the steel price seems to have a minor effect, the reduction of the gas pipeline total life cycle does not exceed 5% even with a 50% difference in pipe steel prices between X70 and X100 steels. On the other side, for the same external diameter, X100 steel presents better pipeline reliability against carbonic corrosion compared to X70 steel.

Practical implications

The main contribution of this study is to provide a decision-support tool to help pipeline constructors enhance the profitability of natural gas transmission pipelines. The optimization method used is simple to use for design engineers during a feasibility study.

Originality/value

The present study presents one step to fill the gap concerning the question of balancing the trade-off between cost savings and structural reliability in high-strength steel pipelines during the early stages of feasibility studies. The optimal design and operations parameters ensuring cost savings on total life cycle costs are identified via an optimization method. The impact of selected optimal parameters on the long-term pipeline service life was estimated via a structural reliability analysis.

Details

International Journal of Structural Integrity, vol. 14 no. 5
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 24 November 2023

Hailong Du, Zengyao Chen, Xiyan Wang, Yongliang Li, Renshu Yang, Zhiyong Liu, Aibing Jin and Xiaogang Li

The purpose of this paper is to develop new types of anchor bolt materials by adding corrosion-resistant elements for alloying and microstructure regulation.

Abstract

Purpose

The purpose of this paper is to develop new types of anchor bolt materials by adding corrosion-resistant elements for alloying and microstructure regulation.

Design/methodology/approach

Three new anchor bolt materials were designed around the 1Ni system. The stress corrosion cracking resistance of the new materials was characterized by microstructure observation, electrochemical testing and slow strain rate tensile testing.

Findings

The strength of the new anchor bolt materials has been improved, and the stress corrosion sensitivity has been reduced. The addition of Nb makes the material exhibit excellent stress corrosion resistance under –1,200 mV conditions, but the expected results were not achieved when Nb and Sb were coupled.

Originality/value

The new anchor bolt materials designed around 1Ni have excellent stress corrosion resistance, which is the development direction of future materials. Nb allows the material to retain its ability to extend in hydrogen-evolution environments.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 23 January 2024

Evrim Baran Aydın, Eyüp Başaran, Sevgi Ateş and Reşit Çakmak

The aim of this study was to investigate the activity of 4-((4-((2-hydroxyethyl)(methyl)amino)benzylidene) amino)-1,5-dimethyl-2-phenyl-1,2-dihydro-3H-pyrazol-3-one (HEMAP), a…

Abstract

Purpose

The aim of this study was to investigate the activity of 4-((4-((2-hydroxyethyl)(methyl)amino)benzylidene) amino)-1,5-dimethyl-2-phenyl-1,2-dihydro-3H-pyrazol-3-one (HEMAP), a Schiff base synthesized and characterized for the first time, to the authors’ knowledge, as a novel inhibitor against corrosion of mild steel (MS) in hydrochloric acid solution.

Design/methodology/approach

HEMAP was characterized by some spectroscopic methods including High-Resolution Mass Spectrometry (HRMS), Proton Nuclear Magnetic Resonance (1H NMR), Carbon-13 (C13) nuclear magnetic resonance (13C NMR) and Fourier Transform Infrared Spectroscopy (FT-IR). Then, the inhibition efficiency of HEMAP on MS in a hydrochloric acid solution was investigated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). To explain the inhibition mechanism, the surface charge, adsorption isotherms and thermodynamic parameters of MS in the inhibitor solution were studied.

Findings

EIS tests displayed that the highest inhibition efficiency was calculated approximately as 99.5% for 5 × 10−2 M HEMAP in 1 M HCl solution. The adsorption of HEMAP on the MS surface was found to be compatible with the Langmuir model isotherm. The thermodynamic parameter results showed that the standard free energy of adsorption of HEMAP on the MS surface was found to be more chemical than physical.

Originality/value

This study is important in terms of demonstrating the performance of the first synthesized HEMAP molecule as an inhibitor against the corrosion of MS in acidic media. EIS tests displayed that the highest inhibition efficiency was calculated approximately as 99.5% for 5 × 10−2 M HEMAP in 1 M HCl solution.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 14 December 2023

Prathamesh Gaikwad and Sandeep Sathe

The purpose of this paper is to study and analyze the effects of fly ash (FA) as a mineral admixture on compressive strength (CS), carbonation resistance and corrosion resistance…

Abstract

Purpose

The purpose of this paper is to study and analyze the effects of fly ash (FA) as a mineral admixture on compressive strength (CS), carbonation resistance and corrosion resistance of reinforced concrete (RC). In addition, the utilization of inexpensive and abundantly available FA as a cement replacement in concrete has several benefits including reduced OPC usage and elimination of the FA disposal problem.

Design/methodology/approach

Reinforcement corrosion and carbonation significantly affect the strength and durability of the RC structures. Also, the utilization of FA as green corrosion inhibitors, which are nontoxic and environmentally friendly alternatives. This review discusses the effects of FA on the mechanical characteristics of concrete. Also, this review analyzes the impact of FA as a partial replacement of cement in concrete and its effect on the depth of carbonation in concrete elements and the corrosion rate of embedded steel as well as the chemical composition and microstructure (X-ray diffraction analysis and scanning electron microscopy) of FA concrete were also reviewed.

Findings

This review provides a clear analysis of the available study, providing a thorough overview of the current state of knowledge on this topic. Regarding concrete CS, the findings indicate that the incorporation of FA often leads to a loss in early-age strength. However, as the curing period increased, the strength of fly ash concrete (FAC) increased with or even surpassed that of conventional concrete. Analysis of the accelerated carbonation test revealed that incorporating FA into the concrete mix led to a shallower carbonation depth and slower diffusion of carbon dioxide (CO2) into the concrete. Furthermore, the half-cell potential test shows that the inclusion of FA increases the durability of RC by slowing the rate of steel-reinforcement corrosion.

Originality/value

This systematic review analyzes a wide range of existing studies on the topic, providing a comprehensive overview of the research conducted so far. This review intends to critically assess the enhancements in mechanical and durability attributes (such as CS, carbonation and corrosion resistance) of FAC and FA-RC. This systematic review has practical implications for the construction and engineering industries. This can support engineers and designers in making informed decisions regarding the use of FA in concrete mixtures, considering both its benefits and potential drawbacks.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 25 April 2022

Ayoub Abou Houraira, Abdellah Ouali, Ouafa Elhammoumi and Ahmed Fekri

Morocco is facing climate change, as shown by national studies conducted to date. The purpose of our research work is, on one hand, to develop an experimental protocol; simulating…

Abstract

Purpose

Morocco is facing climate change, as shown by national studies conducted to date. The purpose of our research work is, on one hand, to develop an experimental protocol; simulating the Moroccan climate, through exposing concretes to accelerated aging in different cycles of temperature variation (+5 to +40 C°) and humidity (60–98% RH) and on another hand, to determine the effect of exposure to temperature and humidity variation cycles on the durability indicators (of concrete [with and without thermal cure]).

Design/methodology/approach

For this purpose, three classes of concrete were studied (C35, C40 and C55). Each class of concrete was considered first with no addition of silica fume (SF) and then with a 10% addition of SF. The concrete samples underwent three types of conditioning before performing the tests. The control concretes (Ct) were demoulated after 24 h and stored under stable temperature and humidity conditions (20 ± 2 °C and 80% ± 5 RH). Treated concretes (CV) demouled after 24 h and exposed to 300 cycles of 12 h of temperature and moisture variation in a climate chamber. And finally, concretes that have undergone a heat cure (CTV) for 5 h at 90 °C, were then removed from the mold and exposed to temperature and moisture variations cycles identical to treated concrete (CV).

Findings

The results obtained show that aging accelerated by temperature change, and humidity improves durability indicators compared to Ct. Concretes that have undergone a thermal cure, followed by accelerated aging, show an improvement in durability indicators between 50 and 200 cycles, but the performance of concrete decreases after 200 exposure cycles. The addition of SF plays a beneficial role in the durability of concrete in the three exposure environments.

Originality/value

The originality of the work is, to develop an experimental protocol, simulating the Moroccan climate, through exposing concretes to accelerated aging in different cycles of temperature variation (+5 to +40 C°) and humidity (60–98% RH) and on another hand, to determine the effect of exposure to temperature and humidity variation cycles on the durability indicators of conventional concrete (with and without thermal cure).

Details

International Journal of Building Pathology and Adaptation, vol. 41 no. 3
Type: Research Article
ISSN: 2398-4708

Keywords

Abstract

Details

Radical Environmental Resistance
Type: Book
ISBN: 978-1-83797-379-8

Article
Publication date: 9 August 2023

Paolo Barbieri, Brice Dattée and Santosh K. Mahapatra

This paper aims to examine how collaborative supplier development (SD) activities, supplier capabilities and buyer–supplier relationship interrelate in technology-based, luxury…

Abstract

Purpose

This paper aims to examine how collaborative supplier development (SD) activities, supplier capabilities and buyer–supplier relationship interrelate in technology-based, luxury product business contexts characterized by small volumes, difficult targets and resource constraints relative to those targets.

Design/methodology/approach

Using inductive case research method, the authors investigate multiple embedded cases involving six dyadic buyer–supplier relationships of two luxury product manufacturers in the motorcycle and automotive industries. Each dyad represents an important sub-system for which the buying firm committed significant SD efforts to help the supplier successfully achieve difficult targets.

Findings

The analysis reveals how paradoxical tensions might emerge as the firms engage in successful SD activities, which could lead to decreasing relationship commitment ultimately resulting in the termination of the relationship. The authors utilize the “value co-creation and value capture” paradox framework to understand the SD and relationship dynamic and characterize it as developing-leveraging paradox to explain its dualities, i.e. commitment-based SD efforts (increasing value co-creation), and unilateral leveraging of the newly acquired capabilities (increasing value capture) by both the buyer and the supplier. Overemphasis on value capture by one of the exchange partners spurs a detrimental vicious cycle leading to the decline of the relationship.

Research limitations/implications

The study explains the paradoxical dynamics that may emerge in SD activities of innovative, technologically complex, luxury product firms. The findings contribute to the SD literature by highlighting how learnings from SD activities could contribute to the dark sides of buyer–supplier relationship. The technologically complex, luxury product contextual characteristics of the study may limit the generalizability of the study findings.

Originality/value

The study provides novel insights into the emergence and management of paradoxes in buyer–supplier relationships, in terms of virtuous and vicious dynamics of developing-leveraging.

Details

International Journal of Operations & Production Management, vol. 43 no. 11
Type: Research Article
ISSN: 0144-3577

Keywords

Article
Publication date: 27 April 2023

Jinliang Liu and Xincheng Su

The effects of carbon fiber reinforced polymer (CFRP) reinforcement form, adhesive type and pre-crack width on failure mode, shear capacity, deflection response, CFRP strain…

Abstract

Purpose

The effects of carbon fiber reinforced polymer (CFRP) reinforcement form, adhesive type and pre-crack width on failure mode, shear capacity, deflection response, CFRP strain response and crack patterns of strengthened specimens were investigated.

Design/methodology/approach

This paper presents a geopolymer adhesive that matches the performance requirements of CFRP adhesive, which is applied to pre-cracked beams reinforced with CFRP strips.

Findings

For specimens with varying structural properties, two failure modes, the CFRP-concrete interface substrate failure and the fracture failure of CFRP, are observed. Moreover, the shear capacity, ultimate deflection and bending stiffness of the U-shaped CFRP-strengthened beams are enhanced in comparison to the complete-wrapping CFRP-strengthened beams. With an increase in pre-crack width, the increase in shear capacity of RC beams shear-strengthened with CFRP strips is less than that of non-cracked beams, resulting in a limited influence on the stiffness of CFRP-strengthened beams. The comparison of experimental results showed that the proposed finite element model (FEM) effectively evaluated the mechanical characteristics of CFRP-strengthened RC beams.

Originality/value

Taking into consideration the reinforcement effect and the concept of environmental protection, the geopolymer adhesive reinforcement scheme is preferable to applying epoxy resin to the CFRP-strengthened RC beams.

Details

International Journal of Structural Integrity, vol. 14 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 27 February 2024

André de Mendonça Santos, Adriano Machado Becker, Néstor Fabian Ayala and Ângelo Márcio Oliveira Sant’Anna

The aim of this paper is to investigate the potential impact of Industry 4.0 (I4.0) digital technologies on promoting sustainability in small and medium-sized enterprises (SMEs…

Abstract

Purpose

The aim of this paper is to investigate the potential impact of Industry 4.0 (I4.0) digital technologies on promoting sustainability in small and medium-sized enterprises (SMEs) within developing economies such as Brazil. Additionally, we present a comprehensive framework that consolidates this correlation.

Design/methodology/approach

Qualitative research was conducted through semi-structured interviews with leaders of SMEs to identify the specific challenges in achieving sustainability. Additionally, interviews were conducted with technology provider firms to evaluate the existing solutions available to SMEs. The interview results were analyzed, and technological solutions were proposed through a focus group session involving four experts in I4.0. These proposed solutions were then compared with the offerings provided by the technology providers. Based on this, a second round of meetings was conducted to gather feedback from the SMEs.

Findings

The findings of this study confirm the feasibility of implementing I4.0 and sustainable practices in SMEs. However, it is crucial to tailor the technologies to the specific circumstances of SMEs. The study presents propositions on how specific applications of technology can address the economic, environmental and social demands of SMEs. Furthermore, a framework is proposed, emphasizing the integration of smart technologies as essential components across sustainability dimensions.

Originality/value

This study makes a significant contribution to the current body of literature as it pioneers the examination of the relationship between I4.0 technologies and sustainability, focusing specifically on SMEs in a developing country context.

Propósito/Objetivos del trabajo

El objetivo de este estudio es investigar el potential impacto de las tecnologías digitales de la Industria 4.0 en la promoción de la sostenibilidad en las pequeñas y medianas empresas (PYMES) en economías en desarrollo, como Brasil.

Diseño/metodología/enfoque

Realizamos una investigación cualitativa mediante entrevistas semiestructuradas a líderes de PYMES para identificar los desafíos que enfrentan en la búsqueda de la sostenibilidad. También llevamos a cabo entrevistas con empresas proveedoras de tecnología para evaluar las soluciones existentes. Los resultados de las entrevistas se analizaron y se propusieron soluciones tecnológicas a través de una sesión de grupo focal con cuatro expertos en la Industria 4.0. Estas soluciones se compararon con las ofertas proporcionadas por los proveedores de tecnología. Posteriormente, se realizaron una segunda reunión para recopilar comentarios de las PYMES.

Hallazgos/Conclusiones

Los hallazgos de este estudio confirman la viabilidad de implementar la Industria 4.0 y prácticas sostenibles en las PYMES. Sin embargo, es crucial adaptar las tecnologías a las circunstancias de las PYMES. Presentamos propuestas sobre cómo las aplicaciones de la tecnología pueden abordar las demandas económicas, ambientales y sociales de las PYMES. Además, proponemos un marco que destaca la integración de tecnologías como componentes esenciales de la sostenibilidad.

Originalidad/valor

Este estudio es pionero en examinar la relación entre las tecnologías de la Industria 4.0 y la sostenibilidad, centrándose específicamente en las PYMES en un contexto de país en desarrollo.

Details

Academia Revista Latinoamericana de Administración, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1012-8255

Keywords

Article
Publication date: 3 July 2023

Haozhe Jin, Ruoshuang Wen, Chao Wang and Xiaofei Liu

The purpose of this study is to determine the cavitation flow characteristics of the high-pressure differential control valve. The relationship between cavitation, flow…

Abstract

Purpose

The purpose of this study is to determine the cavitation flow characteristics of the high-pressure differential control valve. The relationship between cavitation, flow coefficient and spool angle is obtained. By analyzing the relationship between different spool angles and energy loss, the energy loss at different spool angles is predicted.

Design/methodology/approach

A series of numerical simulations were performed to study the cavitation problem of a high-pressure differential control valve using the RNG k–e turbulence model and the Zwart cavitation model. The flow states and energy distribution at different spool angles were analyzed under specific working conditions.

Findings

The cavitation was the weakest when the spool angle was 120° or the outlet pressure was 8 MPa. The pressure and speed fluctuations of the valve in the throttle section were greater than those at other locations. By calculating the entropy production rate, the reason and location of valve energy loss are analyzed. The energy loss near the throttling section accounts for about 92.7% of the total energy loss. According to the calculated energy loss relationship between different regions of the spool angle, the relationship between any spool angle and energy loss in the [80,120] interval is proposed.

Originality/value

This study analyzes the cavitation flow characteristics of the high-pressure differential control valve and provides the law of energy loss in the valve through the analysis method of entropy. The relationship between spool angle and energy loss under cavitation is finally proposed. The research results are expected to provide a theoretical basis for the optimal design of valves.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 22