Search results

1 – 10 of 116
Open Access
Article
Publication date: 29 February 2024

Guanchen Liu, Dongdong Xu, Zifu Shen, Hongjie Xu and Liang Ding

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous…

Abstract

Purpose

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous expansion of the application of AM materials, subtractive processing has become one of the necessary steps to improve the accuracy and performance of parts. In this paper, the processing process of AM materials is discussed in depth, and the surface integrity problem caused by it is discussed.

Design/methodology/approach

Firstly, we listed and analyzed the characterization parameters of metal surface integrity and its influence on the performance of parts and then introduced the application of integrated processing of metal adding and subtracting materials and the influence of different processing forms on the surface integrity of parts. The surface of the trial-cut material is detected and analyzed, and the surface of the integrated processing of adding and subtracting materials is compared with that of the pure processing of reducing materials, so that the corresponding conclusions are obtained.

Findings

In this process, we also found some surface integrity problems, such as knife marks, residual stress and thermal effects. These problems may have a potential negative impact on the performance of the final parts. In processing, we can try to use other integrated processing technologies of adding and subtracting materials, try to combine various integrated processing technologies of adding and subtracting materials, or consider exploring more efficient AM technology to improve processing efficiency. We can also consider adopting production process optimization measures to reduce the processing cost of adding and subtracting materials.

Originality/value

With the gradual improvement of the requirements for the surface quality of parts in the production process and the in-depth implementation of sustainable manufacturing, the demand for integrated processing of metal addition and subtraction materials is likely to continue to grow in the future. By deeply understanding and studying the problems of material reduction and surface integrity of AM materials, we can better meet the challenges in the manufacturing process and improve the quality and performance of parts. This research is very important for promoting the development of manufacturing technology and achieving success in practical application.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Article
Publication date: 27 June 2023

Anshuman Kumar, Chandramani Upadhyay, Ram Subbiah and Dusanapudi Siva Nagaraju

This paper aims to investigate the influence of “BroncoCut-X” (copper core-ZnCu50 coating) electrode on the machining of Ti-3Al-2.5V in view of its extensive use in aerospace and…

Abstract

Purpose

This paper aims to investigate the influence of “BroncoCut-X” (copper core-ZnCu50 coating) electrode on the machining of Ti-3Al-2.5V in view of its extensive use in aerospace and medical applications. The machining parameters are selected as Spark-off Time (SToff), Spark-on Time (STon), Wire-speed (Sw), Wire-Tension (WT) and Servo-Voltage (Sv) to explore the machining outcomes. The response characteristics are measured in terms of material removal rate (MRR), average kerf width (KW) and average-surface roughness (SA).

Design/methodology/approach

Taguchi’s approach is used to design the experiment. The “AC Progress V2 high precision CNC-WEDM” is used to conduct the experiments with ϕ 0.25 mm diameter wire electrode. The machining performance characteristics are examined using main effect plots and analysis of variance. The grey-relation analysis and fuzzy interference system techniques have been developed to combine (called grey-fuzzy reasoning grade) the experimental response while Rao-Algorithm is used to calculate the optimal performance.

Findings

The hybrid optimization result is obtained as SToff = 50µs, STon = 105µs, Sw = 7 m/min, WT = 12N and Sv=20V. Additionally, the result is compared with the firefly algorithm and improved gray-wolf optimizer to check the efficacy of the intended approach. The confirmatory test has been further conducted to verify optimization results and recorded 8.14% overall machinability enhancement. Moreover, the scanning electron microscopy analysis further demonstrated effectiveness in the WEDMed surface with a maximum 4.32 µm recast layer.

Originality/value

The adopted methodology helped to attain the highest machinability level. To the best of the authors’ knowledge, this work is the first investigation within the considered parametric range and adopted optimization technique for Ti-3Al-2.5V using the wire-electro discharge machining.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 20 September 2023

Ke Gao, Xiaoqin Zhou, Rongqi Wang, Mingxu Fan and Haochen Han

Compared with the high stiffness of traditional CNC machine tools, the structural stiffness of industrial robots is usually less than 1 N/µm. Chatter not only affects the quality…

Abstract

Purpose

Compared with the high stiffness of traditional CNC machine tools, the structural stiffness of industrial robots is usually less than 1 N/µm. Chatter not only affects the quality of robotic milling but also reduces the accuracy of the milling process. The purpose of this paper is to reduce chatter in the robotic machining process.

Design/methodology/approach

First, the mode coupling chatter mechanism is analyzed. Then the milling force model and the principal stiffness model are established. Finally, the robot milling stability optimization method is proposed. The method considered functional redundancies, and a new robot milling stability index is proposed to improve the quality of milling operations.

Findings

The experimental results prove a significant reduction in force fluctuations and surface roughness after using the proposed robotic milling stability optimization method.

Originality/value

In this paper, a new robot milling stability index and a new robot milling stability optimization method are proposed. This method can significantly increase the milling stability and improve the milling quality, which can be widely used in the industry.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 3 March 2023

Yanbing Ni, Yizhang Cui, Shilei Jia, Chenghao Lu and Wenliang Lu

The purpose of this paper is to propose a method for selecting the position and attitude trajectory of error measurement to improve the kinematic calibration efficiency of a one…

Abstract

Purpose

The purpose of this paper is to propose a method for selecting the position and attitude trajectory of error measurement to improve the kinematic calibration efficiency of a one translational and two rotational (1T2R) parallel power head and to improve the error compensation effect by improving the properties of the error identification matrix.

Design/methodology/approach

First, a general mapping model between the endpoint synthesis error is established and each geometric error source. Second, a model for optimizing the position and attitude trajectory of error measurement based on sensitivity analysis results is proposed, providing a basis for optimizing the error measurement trajectory of the mechanism in the working space. Finally, distance error measurement information and principal component analysis (PCA) ideas are used to construct an error identification matrix. The robustness and compensation effect of the identification algorithm were verified by simulation and through experiments.

Findings

Through sensitivity analysis, it is found that the distribution of the sensitivity coefficient of each error source in the plane of the workspace can approximately represent its distribution in the workspace, and when the end of the mechanism moves in a circle with a large nutation angle, the comprehensive influence coefficient of each sensitivity is the largest. Residual analysis shows that the robustness of the identification algorithm with the idea of PCA is improved. Through experiments, it is found that the compensation effect is improved.

Originality/value

A model for optimizing the position and attitude trajectory of error measurement is proposed, which can effectively improve the error measurement efficiency of the 1T2R parallel mechanism. In addition, the PCA idea is introduced. A least-squares PCA error identification algorithm that improves the robustness of the identification algorithm by improving the property of the identification matrix is proposed, and the compensation effect is improved. This method has been verified by experiments on 1T2R parallel mechanism and can be extended to other similar parallel mechanisms.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 20 March 2023

Yang Li, Jinke Gao, Jianing Zhou, Tong Zhu and Zhilei Jiang

Cutting force prediction is pretty important for manufacture management. Thus, the purpose of this paper is to obtain the cutting force of the machining process with high…

Abstract

Purpose

Cutting force prediction is pretty important for manufacture management. Thus, the purpose of this paper is to obtain the cutting force of the machining process with high efficiency and low cost. A method based on the improved auto regressive moving average (ARMA) model is proposed for cutting force predictions in milling process.

Design/methodology/approach

First, classification and normalization are made for initial cutting force. Second, the cutting force sequences are compressed followed singular and valid value removed. At last, the improved ARMA model is used for cutting force fit and extrapolation considered the time domain characteristics.

Findings

A series of cutting force with the spindle speed 595r/min is carried out in the research. It is showed that the mean absolute percentage error value of cutting force extrapolation results which is based on the improved model is smaller. The percentage value is approximately 5.80%. Then the root mean square error test value is only 72.49, which is smaller than that with other traditional method, such as hidden Markov model. The extrapolation results with the proposed model performed good consistency and accuracy in terms of peaks, valleys and volatility compared with the experiment results.

Originality/value

The proposed method that is based on the improved ARMA model can be used for cutting force predictions conveniently. And the predictions can be used for improving the qualities in milling process.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 30 November 2023

Wenbo Li, Bin Dan, Xumei Zhang, Yi Liu and Ronghua Sui

With the rapid development of the sharing economy in manufacturing industries, manufacturers and the equipment suppliers frequently share capacity through the third-party…

Abstract

Purpose

With the rapid development of the sharing economy in manufacturing industries, manufacturers and the equipment suppliers frequently share capacity through the third-party platform. This paper aims to study influences of manufacturers sharing capacity on the supplier and to analyze whether the supplier shares capacity as well as its influences.

Design/methodology/approach

This paper deals with conditions that the supplier and manufacturers share capacity through the third-party platform, and the third-party platform competes with the supplier in equipment sales. Considering the heterogeneity of the manufacturer's earning of unit capacity usage and the production efficiency of manufacturer's usage strategies, this paper constructs capacity sharing game models. Then, model equilibrium results under different sharing scenarios are compared.

Findings

The results show that when the production or maintenance cost is high, manufacturers sharing capacity simultaneously benefits the supplier, the third-party platform and manufacturers with high earnings of unit capacity usage. When both the rental efficiency and the production cost are low, or both the rental efficiency and the production cost are high, the supplier simultaneously sells equipment and shares capacity. The supplier only sells equipment in other cases. When both the rental efficiency and the production cost are low, the supplier’s sharing capacity realizes the win-win-win situation for the supplier, the third-party platform and manufacturers with moderate earnings of unit capacity usage.

Originality/value

This paper innovatively examines supplier's selling and sharing decisions considering manufacturers sharing capacity. It extends the research on capacity sharing and is important to supplier's operational decisions.

Details

Industrial Management & Data Systems, vol. 124 no. 2
Type: Research Article
ISSN: 0263-5577

Keywords

Article
Publication date: 1 December 2023

Xufan Zhang, Xue Fan and Mingke He

The challenges faced by China's high-end equipment manufacturing (HEEM) industry are becoming clearer in the process of global supply chain (GSC) reconfiguration. The purpose of…

Abstract

Purpose

The challenges faced by China's high-end equipment manufacturing (HEEM) industry are becoming clearer in the process of global supply chain (GSC) reconfiguration. The purpose of this study is to investigate how China's HEEM industry has been affected by the GSC reconfiguration, as well as its short- and long-term strategies.

Design/methodology/approach

The authors adopted a multi-method approach. Interviews were conducted in Phase 1, while a three-round Delphi survey was conducted in Phase 2 to reach consensus at the industry level.

Findings

The GSC reconfiguration affected China's HEEM supply chain (SC). Its direct effects include longer lead times, higher purchasing prices and inconsistent supply and inventory levels of key imported components and materials. Its indirect effects include inconsistent product quality and cash flows. In the short term, China's HEEM enterprises have sought to employ localized substitutes, while long-term strategies include continuous technological innovation, industry upgrades and developing SC resilience.

Originality/value

This study not only encourages Chinese HEEM enterprises to undertake a comprehensive examination of their respective industries but also provides practical insights for SC scholars, policymakers and international stakeholders interested in how China's HEEM industry adapts to the GSC reconfiguration and gains global market share.

Details

International Journal of Physical Distribution & Logistics Management, vol. 54 no. 1
Type: Research Article
ISSN: 0960-0035

Keywords

Open Access
Article
Publication date: 28 February 2023

Ahmad Hariri, Pedro Domingues and Paulo Sampaio

This paper aims to classify journal papers in the context of hybrid quality function deployment QFD and multi-criteria decision-making (MCDM) methods published during 2004–2021.

1917

Abstract

Purpose

This paper aims to classify journal papers in the context of hybrid quality function deployment QFD and multi-criteria decision-making (MCDM) methods published during 2004–2021.

Design/methodology/approach

A conceptual classification scheme is presented to analyze the hybrid QFD-MCDM methods. Then some recommendations are given to introduce directions for future research.

Findings

The results show that among all related areas, the manufacturing application has the most frequency of published papers regarding hybrid QFD-MCDM methods. Moreover, using uncertainty to establish a hybrid QFD-MCDM the relevant papers have been considered during the time interval 2004–2021.

Originality/value

There are various shortcomings in conventional QFD which limit its efficiency and potential applications. Since 2004, when MCDM methods were frequently adopted in the quality management context, increasing attention has been drawn from both practical and academic perspectives. Recently, the integration of MCDM techniques into the QFD model has played an important role in designing new products and services, supplier selection, green manufacturing systems and sustainability topics. Hence, this survey reviewed hybrid QFD-MCDM methods during 2004–2021.

Details

International Journal of Quality & Reliability Management, vol. 40 no. 10
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 15 May 2023

Dongsheng Li and Jun Li

Minimizing the impact on the surrounding environment and maximizing the use of production raw materials while ensuring that the relevant processes and services can be delivered…

Abstract

Purpose

Minimizing the impact on the surrounding environment and maximizing the use of production raw materials while ensuring that the relevant processes and services can be delivered within the specified time are the contents of enterprise supply chain management in the green financial system.

Design/methodology/approach

With the continuous development of China's economy and the continuous deepening of the concept of sustainable development, how to further upgrade the enterprise supply chain management is an urgent need to solve. How to maximize the utilization of resources in the supply chain needs to be realized from the whole process of raw material purchase, transportation and processing.

Findings

It was proved that digital twin technology had a partial intermediary role in the role of supply chain big data analysis capability on corporate finance, market, operation and other performance.

Originality/value

This paper focused on describing how digital twin technology could be applied to big data analysis of enterprise supply chain under the green financial system and proved its usability through experiments. The experimental results showed that the indirect effect of the path big data analysis capability digital twin technology enterprise financial performance was 0.378. The indirect effect of the path big data analysis capability digital twin technology enterprise market performance was 0.341. The indirect effect of the path big data analysis capability digital twin technology enterprise operational performance was 0.374.

Details

Kybernetes, vol. 53 no. 2
Type: Research Article
ISSN: 0368-492X

Keywords

Book part
Publication date: 16 January 2024

Ayodeji E. Oke and Seyi S. Stephen

This chapter discussed the implementation of the digital twin (DT) idea into construction. Through the adoption of DTs into construction practices, construction professionals have…

Abstract

This chapter discussed the implementation of the digital twin (DT) idea into construction. Through the adoption of DTs into construction practices, construction professionals have been able to project an identical virtual concept of sections of the project execution right from the onset. In the introduction and discussing of its origin, the DT was further assessed about its applications in construction beneficial in enhancing project delivery. Other sections like barriers, drivers and benefits of the DT in construction summarised what this chapter represents in terms of discussing the new involvement of digital tools in construction execution, management and sustainability.

Details

A Digital Path to Sustainable Infrastructure Management
Type: Book
ISBN: 978-1-83797-703-1

Keywords

1 – 10 of 116