Search results

1 – 10 of 150
Article
Publication date: 4 November 2021

Kexin Zhang, Dachao Li, Xinyuan Shen, Wenyu Hou, Yanfeng Li and Xingwei Xue

This paper aims to describe carbon fiber reinforced plastics (CFRP) bars as a way to strengthen a 40-year-old stone arch bridge. To investigate effectiveness of the strengthening…

Abstract

Purpose

This paper aims to describe carbon fiber reinforced plastics (CFRP) bars as a way to strengthen a 40-year-old stone arch bridge. To investigate effectiveness of the strengthening method, fielding-load tests were carried out before and after strengthening.

Design/methodology/approach

High-strength CFRP bars with minor radius, high tensile strain and good corrosion resistance were used in this reinforcement. The construction process for strengthening with CFRP bars – including CFRP bars cutting, crack grouting, original structural surface treatment, implant drilling, CFRP bars installation and pouring mortar – was described. Ultimate bearing capacity of the bridge after strengthening was discussed.

Findings

The results of concrete stress and deflection show that the strength and stiffness of the strengthened bridge are improved. The strengthened way with CFRP bars is feasible and effective.

Originality/value

This paper describes CFRP bars as a way to strengthen a 40-year-old stone arch bridge.

Details

International Journal of Building Pathology and Adaptation, vol. 41 no. 5
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 23 March 2022

Long Liu, Xingpeng Ma, Li Yan and Yongmei Wang

Embedding carbon fiber reinforced plastics (CFRP) bars in the tension zone of reinforced concrete (RC) beams is a widely used reinforcement method, which has the advantages of…

Abstract

Purpose

Embedding carbon fiber reinforced plastics (CFRP) bars in the tension zone of reinforced concrete (RC) beams is a widely used reinforcement method, which has the advantages of strong anti-peel ability and high utilization of tensile materials. To further improve the flexural bearing capacity of RC beams, a new composite reinforcement method using the UHPC layer in the compressive zone of RC beams is proposed based on embedding CFRP bars in the tension zone of RC beams.

Design/methodology/approach

The finite element model of an RC experimental beam with CFRP bars embedded in the tension zone was carried out by ABAQUS. Besides, the reliability of the finite element model results was verified by comparing with the experimental results. On this basis, the flexural reinforcement effect of CFRP bars and UHPC layers on RC beams was analyzed.

Findings

Calculation results show the flexural bearing capacity of the beam strengthened by the new method is 15.9%, which is higher than that of the unreinforced beam, and 10.4% higher than that of the beam strengthened only with CFRP bars. The beam ductility ratio of the new method is 8.25%, which is slightly higher than that of the unreinforced beam and equal to that of the beam reinforced only with CFRP bars embedded in the tension zone. The effectiveness of the new method is further verified by using the analytical calculation method.

Originality/value

A new flexural reinforcement method for reinforced concrete beams is proposed, and the effectiveness of the method was verified by experiments and finite element model. The flexural bearing capacity and ductility of the new method were analyzed based on the load-deflection curve. Finally, the possibility of the new method was verified by analytical analysis.

Details

Multidiscipline Modeling in Materials and Structures, vol. 18 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 22 August 2022

Long Liu and Songqiang Wan

To make full use of the tensile strength of near surface mounting (NSM) pasted carbon fiber reinforced plastics (CFRP) strips and further increase the flexural bearing capacity…

89

Abstract

Purpose

To make full use of the tensile strength of near surface mounting (NSM) pasted carbon fiber reinforced plastics (CFRP) strips and further increase the flexural bearing capacity and flexibility of reinforced concrete (RC) beams, a new composite reinforcement method using ultra-high performance concrete (UHPC) layer in the compression zone of RC beams is submitted based on embedding CFRP strips in the tension zone of RC beams. This paper aims to discuss the aforementioned points.

Design/methodology/approach

The experimental beam was simulated by ABAQUS, and compared with the experimental results, the validity of the finite element model was verified. On this basis, the reinforced RC beam is used as the control beam, and parameters such as the CFRP strip number, UHPC layer thickness, steel bar ratio and concrete strength are studied through the verified model. In addition, the numerical calculation results of yield strength, ultimate strength, failure deflection and flexibility are also given.

Findings

The flexural bearing capacity of RC beams supported by the new method is 132.3% higher than that of unreinforced beams, and 7.8% higher than that of RC beams supported only with CFRP strips. The deflection flexibility coefficient of the new reinforced RC beam is 8.06, which is higher than that of the unreinforced beam and the reinforced concrete beam with only CFRP strips embedded in the tension zone.

Originality/value

In this paper, a new reinforcement method is submitted, and the effects of various parameters on the ultimate bearing capacity and flexibility of reinforced RC beams are analyzed by the finite element numerical simulation. Finally, the effectiveness of the new method is verified by the analytical formula.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 6 July 2022

Baocheng Liu, Jinliang Liu, Yanqian Wen, Qinglin Hu, Liang Liu and Shili Zhao

In this paper, to obtain shear and bending performance of carbon fiber-reinforced polymer (CFRP)-strengthened beams bonded by geopolymers, the effects of impregnated adhesive…

Abstract

Purpose

In this paper, to obtain shear and bending performance of carbon fiber-reinforced polymer (CFRP)-strengthened beams bonded by geopolymers, the effects of impregnated adhesive types, strengthened scheme, CFRP layer and pre-cracked width are investigated, and the performance of CFRP-strengthened beams is validated by the establishment of Finite Element Models (FEMs).

Design/methodology/approach

In this paper, static loading test and finite element analysis of epoxy-CFRP-strengthened (ECS) and geopolymer-CFRP-strengthened (GCS) were carried out, and the bearing capacity and stiffness were compared, the results show that GCS reinforced concrete (RC) beam is feasible and effective.

Findings

The bearing capacity, crack distribution and development, load–deflection curves of GCS RC beams with different pre-crack widths were investigated. The reinforcement effect of geopolymer achieves the same as epoxy, effectively improving the ultimate bearing capacity of the beam, with a maximum increase rate of 28.9%. The failure mode of CFRP is broken in the yield failure stage of GCS RC beam with reasonable strengthening form, and the utilization rate of CFRP is improved. CFRP-strengthened layers, pre-cracked widths significantly affect the mechanical properties, and deformation properties of the strengthened beams.

Originality/value

Compared with ECS RC beams, the bearing capacity and stiffness of GCS RC beams are similar to or even better, indicating that GCS RC beam is feasible and effective. It is a new method for CFRP-strengthened beams, which not only conforms to the concept of national ecological civilization construction, but also provides an economical, environmentally friendly and excellent performance solution for structural reinforcement.

Details

International Journal of Structural Integrity, vol. 13 no. 5
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 9 June 2022

Jinliang Liu and Fangpu Yan

A numerical simulation of the test beam was carried out with Abaqus and compared with test data to ensure that the modeling method is accurate. An analysis of the effects of the…

Abstract

Purpose

A numerical simulation of the test beam was carried out with Abaqus and compared with test data to ensure that the modeling method is accurate. An analysis of the effects of the angle between the U-hoop and horizontal direction, the pre-crack height, the pre-crack spacing, and the strength of the geopolymer adhesive on the cracking load and ultimate load of the reinforced beam is presented.

Design/methodology/approach

Load tests and finite element simulations were conducted on carbon fiber reinforced polymer-reinforced concrete beams bonded with geopolymer adhesive. The bond-slip effect of geopolymer adhesive was taken into account in the model. The flexural performances, the flexural load capacities, the deformation capacities, and the damage characteristics of the beams were observed, and the numerical simulation results were in good agreement with the experimental results. An analysis of parametric sensitivity was performed using finite element simulation to investigate the effects of different angles between U-hoop and horizontal direction, pre-crack heights, pre-crack spacing, and strength of geopolymer adhesive on cracking load and ultimate load.

Findings

Under the same conditions, the higher the height of the pre-crack, the lower the bearing capacity; increasing the pre-crack spacing can delay cracking, but reduce ultimate load. By increasing the strength of the geopolymer adhesive, the flexural resistance of the beam is improved, and crack development is also delayed; the angle between the u-hoop and horizontal direction does not affect the cracking of reinforced beams; a horizontal u-hoop has a better effect than an oblique u-hoop, and 60° is the ideal angle between the u-hoop and horizontal direction for better reinforcement.

Originality/value

According to the experimental study in this paper, Abaqus was used to simulate the strength of different angles between U-hoop and horizontal direction, pre-crack heights, pre-crack spacings, and geopolymer adhesives, and the angles' effects on the cracking load and load carrying capacity of test beams were discussed. Since no actual tests are required, the method is economical. This paper offers data support for the promotion and application of environmentally friendly reinforcement technology, contributes to environmental protection, and develops a new method for reinforcing reinforced concrete beams and a new concept for finite element simulations.

Details

Multidiscipline Modeling in Materials and Structures, vol. 18 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 15 June 2011

Muhammad Rafi, Ali Nadjai, Faris Ali and Paul O'Hare

Fibre reinforced polymer (FRP) bars are made of innovative materials and establishment of the fire resistance of FRP reinforced concrete (RC) is necessary for their widespread…

Abstract

Fibre reinforced polymer (FRP) bars are made of innovative materials and establishment of the fire resistance of FRP reinforced concrete (RC) is necessary for their widespread application. Experimental behaviours of Carbon FRP (CFRP) and Glass FRP (GFRP) bar RC beams at elevated temperatures have been investigated in this paper. Data are presented from fire tests of six simply supported beams that were fabricated using normal-weight concrete. The effects of varying load levels and FRP bar type were studied. The beams were designed over-reinforced and were tested in a floor furnace. A steel bar reinforced beam was used as control specimen. A rebar temperature of 500°C was selected as failure criterion for the beam. Non-linear temperature distribution across the beam cross section was observed. Temperature rise in the compression concrete was found insignificant and its mechanical properties were nearly unaffected. All beams met the failure criterion of critical rebar temperature of 500°C. The stiffness reduction in the GFRP and steel RC beams was nearly the same at elevated temperatures and was independent of load levels and/or bar modulus. The CFRP bar reinforced beams showed better stiffness characteristics compared to other beams.

Details

Journal of Structural Fire Engineering, vol. 2 no. 2
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 27 April 2023

Jinliang Liu and Xincheng Su

The effects of carbon fiber reinforced polymer (CFRP) reinforcement form, adhesive type and pre-crack width on failure mode, shear capacity, deflection response, CFRP strain…

Abstract

Purpose

The effects of carbon fiber reinforced polymer (CFRP) reinforcement form, adhesive type and pre-crack width on failure mode, shear capacity, deflection response, CFRP strain response and crack patterns of strengthened specimens were investigated.

Design/methodology/approach

This paper presents a geopolymer adhesive that matches the performance requirements of CFRP adhesive, which is applied to pre-cracked beams reinforced with CFRP strips.

Findings

For specimens with varying structural properties, two failure modes, the CFRP-concrete interface substrate failure and the fracture failure of CFRP, are observed. Moreover, the shear capacity, ultimate deflection and bending stiffness of the U-shaped CFRP-strengthened beams are enhanced in comparison to the complete-wrapping CFRP-strengthened beams. With an increase in pre-crack width, the increase in shear capacity of RC beams shear-strengthened with CFRP strips is less than that of non-cracked beams, resulting in a limited influence on the stiffness of CFRP-strengthened beams. The comparison of experimental results showed that the proposed finite element model (FEM) effectively evaluated the mechanical characteristics of CFRP-strengthened RC beams.

Originality/value

Taking into consideration the reinforcement effect and the concept of environmental protection, the geopolymer adhesive reinforcement scheme is preferable to applying epoxy resin to the CFRP-strengthened RC beams.

Details

International Journal of Structural Integrity, vol. 14 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 31 October 2022

Yasmeen Taleb Obaidat, Wasim Barham and Rawan Abu libdeh

The main aim of this study is to examine the behavior of reinforced concrete short columns strengthened using longitudinal near surface mounted (NSM)-carbon fiber reinforced…

Abstract

Purpose

The main aim of this study is to examine the behavior of reinforced concrete short columns strengthened using longitudinal near surface mounted (NSM)-carbon fiber reinforced polymer (CFRP) strips.

Design/methodology/approach

A full 3D-finite element (FE) model was developed using ABAQUS in order to conduct the analysis. The model is first validated based on experimental data available in the literature, and then the effect of concrete compressive strength, number of CFRP strips that are used and the spacing between them were taken in consideration for both concentric and eccentric loading cases. The parametric study specimens were divided into three groups. The first group consisted of unstrengthened columns and served as control specimens. The second group consisted of columns strengthened by longitudinal CFRP strips at two opposite column faces.

Findings

The results of this study are used to develop interaction diagrams for CFRP-strengthened short columns and to develop best-fit equations to estimate the nominal axial load and moment capacities for these strengthened columns. The results showed that the specimens that were strengthened using more longitudinal CFRP strips showed a significant increase in axial load capacity and a significant improvement in the interaction diagram, especially at large load eccentricity values. This result can be justified by the fact that longitudinal strips effectively resist the bending moment that is generated due to eccentric loading. Generally, the process of strengthening using longitudinal strips only has a reasonable effect and it can be typically considered an excellent choice considering the economic aspect when the budget of strengthening is limited.

Originality/value

This research aims at studying the performance of strengthened rectangular reinforced concrete short columns with CFRP strips using FE method, developing interaction diagrams of strengthened columns in order to investigate the effect of different parameters such as compressive strength (20, 30 and 40 MPa), number of CFRP strips (1, 2, 3 and 4) and the spacing between CFRP strips in terms of the ratio of CFRP center point distance to column outside dimension ratio (0.60, 0.70 and 0.80) on the behavior of strengthened RC columns and improving empirical formulas to predict the nominal axial load and moment capacities of strengthened RC columns. These parameters that directly affect short column load carrying capacity are presented in ACI-318 (2014).

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 1 May 2002

R.V. Balendran, T.M. Rana, T. Maqsood and W.C. Tang

This paper presents an overview and discusses the applications of fibre reinforced polymer (FRP) bars as reinforcement in civil engineering structures. Following a discussion of…

3777

Abstract

This paper presents an overview and discusses the applications of fibre reinforced polymer (FRP) bars as reinforcement in civil engineering structures. Following a discussion of the science underpinning their use, selected case studies where FRP reinforcement has been used are presented. The use of FRP reinforcement is rapidly gaining pace and may replace the traditional steel due to its enhanced properties and cost‐effectiveness. In addition, FRP reinforcement offers an effective solution to the problem of steel durability in aggressive environments and where the magnetic or electrical properties of steel are undesirable.

Details

Structural Survey, vol. 20 no. 2
Type: Research Article
ISSN: 0263-080X

Keywords

Article
Publication date: 30 March 2022

Jinliang Liu and Fangpu Yan

In this paper, the effects of geopolymer adhesive, the number of CFRP layers and the width of pre-crack on the flexural performance of reinforced concrete beams strengthened with…

Abstract

Purpose

In this paper, the effects of geopolymer adhesive, the number of CFRP layers and the width of pre-crack on the flexural performance of reinforced concrete beams strengthened with CFRP were studied, and the flexural capacity of strengthened beams was calculated theoretically.

Design/methodology/approach

Reinforced concrete beams were strengthened with CFRP by geopolymer adhesive, and flexural load tests were conducted to observe the reinforcement effect. Based on the method of calculating the flexural capacity of reinforced concrete beams, a theoretical calculation model on the flexural capacity of reinforced concrete beams strengthened with geopolymer adhesive bonded CFRP was established.

Findings

The test data shown the flexural capacity of epoxy resin adhesive CFRP strengthened reinforced concrete beams is 7.76% higher than that geopolymer adhesive is used. The flexural capacity of reinforced concrete beams strengthened with three layers of CFRP is 1.86% higher than that two layers are adopted. The mean ratio of the test data and the calculation results of the flexural capacity is 0.973, and the mean square error is 0.008. It can be seen that the test data are in good agreement with the theoretical value.

Originality/value

This paper provides data support for the popularization and application of the new environment-friendly reinforcement technology, contributes to the cause of environmental protection, and provides a new method for strengthening reinforced concrete beams.

Details

International Journal of Structural Integrity, vol. 13 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

1 – 10 of 150