Search results

1 – 10 of 11
Article
Publication date: 19 May 2022

Lucas B. Nhelekwa, Joshua Z. Mollel and Ismail W.R. Taifa

Industry 4.0 has an inimitable potential to create competitive advantages for the apparel industry by enhancing productivity, production, profitability, efficiency and…

Abstract

Purpose

Industry 4.0 has an inimitable potential to create competitive advantages for the apparel industry by enhancing productivity, production, profitability, efficiency and effectiveness. This study, thus, aims to assess the digitalisation level of the Tanzanian apparel industry through the Industry 4.0 perspectives.

Design/methodology/approach

A mixed-methods-based approach was deployed. This study deployed semi-structured interviews, document review and observation methods for the qualitative approach. For the quantitative approach, closed-ended questionnaires were used to ascertain the digitalisation levels and maturity level of the textiles and apparel (T&A) factories and small and medium-sized textile enterprises in Tanzania. The sample size was 110, with participants engaged through the purposive sampling technique.

Findings

Industry 4.0 frameworks evolved into practices mainly since 2011 in several service and manufacturing industries globally. For Tanzania, the findings indicate that the overall maturity level of the T&A industries is 2.5 out of 5.0, demonstrating a medium level of adoption. Thus, the apparel industries are not operating under the industry 4.0 framework; they are operating within the third industrial revolution – Industry 3.0 – framework. For such industries to operate within the fourth industrial revolution – Industry 4.0 – that is only possible if there is significantly well-developed industrial infrastructure, availability of engineering talent, stable commercial partnerships, demand from the marketplace and transactional relationship with customers.

Research limitations/implications

This study’s limitations include: firstly, Industry 4.0 is an emerging area; this resulted in limited theoretical underpinnings in the Tanzanian perspectives. Secondly, the studied industries may not suffice the need to generalise the findings for the entire country, thus needing another study.

Originality/value

Although Industry 4.0 conceptual frameworks have been on trial in several industries since 2011, this is amongst the first empirical research on Industry 4.0 in the Tanzanian apparel industry that assesses the digitalisation levels.

Details

Research Journal of Textile and Apparel, vol. 28 no. 2
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 21 July 2023

Rajesh B. Pansare, Madhukar R. Nagare and Vaibhav S. Narwane

A reconfigurable manufacturing system (RMS) can provide manufacturing flexibility, meet changing market demands and deliver high performance, among other benefits. However…

96

Abstract

Purpose

A reconfigurable manufacturing system (RMS) can provide manufacturing flexibility, meet changing market demands and deliver high performance, among other benefits. However, adoption and performance improvement are critical activities in it. The current study aims to identify the important factors influencing RMS adoption and validate a conceptual model as well as develop a structural model for the identified factors.

Design/methodology/approach

An extensive review of RMS articles was conducted to identify the eight factors and 47 sub-factors that are relevant to RMS adoption and performance improvement. For these factors, a conceptual framework was developed as well as research hypotheses were framed. A questionnaire was developed, and 117 responses from national and international domain experts were collected. To validate the developed framework and test the research hypothesis, structural equation modeling was used, with software tools SPSS and AMOS.

Findings

The findings support six hypotheses: “advanced technologies,” “quality and safety practice,” “strategy and policy practice,” “organizational practices,” “process management practices,” and “soft computing practices.” All of the supported hypotheses have a positive impact on RMS adoption. However, the two more positive hypotheses, namely, “sustainability practices” and “human resource policies,” were not supported in the analysis, highlighting the need for greater awareness of them in the manufacturing community.

Research limitations/implications

The current study is limited to the 47 identified factors; however, these factors can be further explored and more sub-factors identified, which are not taken into account in this study.

Practical implications

Managers and practitioners can use the current work’s findings to develop effective RMS implementation strategies. The results can also be used to improve the manufacturing system’s performance and identify the source of poor performance.

Originality/value

This paper identifies critical RMS adoption factors and demonstrates an effective structural-based modeling method. This can be used in a variety of fields to assist policymakers and practitioners in selecting and implementing the best manufacturing system.

Graphical abstract

Open Access
Article
Publication date: 20 March 2024

Guijian Xiao, Tangming Zhang, Yi He, Zihan Zheng and Jingzhe Wang

The purpose of this review is to comprehensively consider the material properties and processing of additive titanium alloy and provide a new perspective for the robotic grinding…

Abstract

Purpose

The purpose of this review is to comprehensively consider the material properties and processing of additive titanium alloy and provide a new perspective for the robotic grinding and polishing of additive titanium alloy blades to ensure the surface integrity and machining accuracy of the blades.

Design/methodology/approach

At present, robot grinding and polishing are mainstream processing methods in blade automatic processing. This review systematically summarizes the processing characteristics and processing methods of additive manufacturing (AM) titanium alloy blades. On the one hand, the unique manufacturing process and thermal effect of AM have created the unique processing characteristics of additive titanium alloy blades. On the other hand, the robot grinding and polishing process needs to incorporate the material removal model into the traditional processing flow according to the processing characteristics of the additive titanium alloy.

Findings

Robot belt grinding can solve the processing problem of additive titanium alloy blades. The complex surface of the blade generates a robot grinding trajectory through trajectory planning. The trajectory planning of the robot profoundly affects the machining accuracy and surface quality of the blade. Subsequent research is needed to solve the problems of high machining accuracy of blade profiles, complex surface material removal models and uneven distribution of blade machining allowance. In the process parameters of the robot, the grinding parameters, trajectory planning and error compensation affect the surface quality of the blade through the material removal method, grinding force and grinding temperature. The machining accuracy of the blade surface is affected by robot vibration and stiffness.

Originality/value

This review systematically summarizes the processing characteristics and processing methods of aviation titanium alloy blades manufactured by AM. Combined with the material properties of additive titanium alloy, it provides a new idea for robot grinding and polishing of aviation titanium alloy blades manufactured by AM.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Article
Publication date: 19 March 2024

Diana Irinel Baila, Filippo Sanfilippo, Tom Savu, Filip Górski, Ionut Cristian Radu, Catalin Zaharia, Constantina Anca Parau, Martin Zelenay and Pacurar Razvan

The development of new advanced materials, such as photopolymerizable resins for use in stereolithography (SLA) and Ti6Al4V manufacture via selective laser melting (SLM…

Abstract

Purpose

The development of new advanced materials, such as photopolymerizable resins for use in stereolithography (SLA) and Ti6Al4V manufacture via selective laser melting (SLM) processes, have gained significant attention in recent years. Their accuracy, multi-material capability and application in novel fields, such as implantology, biomedical, aviation and energy industries, underscore the growing importance of these materials. The purpose of this study is oriented toward the application of new advanced materials in stent manufacturing realized by 3D printing technologies.

Design/methodology/approach

The methodology for designing personalized medical devices, implies computed tomography (CT) or magnetic resonance (MR) techniques. By realizing segmentation, reverse engineering and deriving a 3D model of a blood vessel, a subsequent stent design is achieved. The tessellation process and 3D printing methods can then be used to produce these parts. In this context, the SLA technology, in close correlation with the new types of developed resins, has brought significant evolution, as demonstrated through the analyses that are realized in the research presented in this study. This study undertakes a comprehensive approach, establishing experimentally the characteristics of two new types of photopolymerizable resins (both undoped and doped with micro-ceramic powders), remarking their great accuracy for 3D modeling in die-casting techniques, especially in the production process of customized stents.

Findings

A series of analyses were conducted, including scanning electron microscopy, energy-dispersive X-ray spectroscopy, mapping and roughness tests. Additionally, the structural integrity and molecular bonding of these resins were assessed by Fourier-transform infrared spectroscopy–attenuated total reflectance analysis. The research also explored the possibilities of using metallic alloys for producing the stents, comparing the direct manufacturing methods of stents’ struts by SLM technology using Ti6Al4V with stent models made from photopolymerizable resins using SLA. Furthermore, computer-aided engineering (CAE) simulations for two different stent struts were carried out, providing insights into the potential of using these materials and methods for realizing the production of stents.

Originality/value

This study covers advancements in materials and additive manufacturing methods but also approaches the use of CAE analysis, introducing in this way novel elements to the domain of customized stent manufacturing. The emerging applications of these resins, along with metallic alloys and 3D printing technologies, have brought significant contributions to the biomedical domain, as emphasized in this study. This study concludes by highlighting the current challenges and future research directions in the use of photopolymerizable resins and biocompatible metallic alloys, while also emphasizing the integration of artificial intelligence in the design process of customized stents by taking into consideration the 3D printing technologies that are used for producing these stents.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 13 February 2024

Pavankumar Sonawane, Chandrakishor Laxman Ladekar, Ganesh Annappa Badiger and Rahul Arun Deore

Snap fits are crucial in automotive applications for rapid assembly and disassembly of mating components, eliminating the need for fasteners. This study aims to focus on designing…

Abstract

Purpose

Snap fits are crucial in automotive applications for rapid assembly and disassembly of mating components, eliminating the need for fasteners. This study aims to focus on designing and analyzing serviceable cantilever fit snap connections used in automobile plastic components. Snap fits are classified into permanent and semi-permanent fittings, with permanent fittings having a snap clipping angle between 0° and 5° and semi-permanent fittings having a clipping angle between 15° and 45°. Polypropylene random copolymer is chosen for its exceptional fatigue resistance and elasticity.

Design/methodology/approach

The design process includes determining dimensions, computing assembly, disassembly pressures and creating three-dimensional computer-aided design models. Finite element analysis (FEA) is used to evaluate the snap-fit mechanism’s stress, deformation and general functionality in operational scenarios.

Findings

The study develops a modified snap-fit mechanism with decreased bending stress and enhanced mating force optimization. The maximum bending stress during assembly is 16.80 MPa, requiring a mating force of 7.58 N, while during disassembly, it is 37.3 MPa, requiring a mating force of 16.85 N. The optimized parameters significantly improve the performance and dependability of the snap-fit mechanism. The results emphasize the need of taking into account both the assembly and disassembly processes in snap-fit design, because the research demonstrates greater forces during disassembly. The approach developed integrates FEA and design for assembly (DFA) concepts to provide a solution for improving the efficiency and reliability of snap-fit connectors in automotive applications.

Originality/value

The research paper’s distinctiveness comes from the fact that it presents a thorough and realistic viewpoint on snap-fit design, emphasizes material selection, incorporates DFA principles and emphasizes the specific requirements of both assembly and disassembly operations. These discoveries may enhance the efficiency, reliability and sustainability of snap-fit connections in plastic automobile parts and beyond. In conclusion, the idea that disassembly needs to be done with a lot more force than installation in a snap-fit design can have a good effect on buzz, squeak and rattle and noise, vibration and harshness characteristics in automobiles.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 15 February 2024

Anjala S. Krishen, Jesse L. Barnes, Maria Petrescu and Shaheena Janjuha-Jivraj

This interdisciplinary study aims to analyze how service organizations communicate sustainable beliefs in their social media narratives and use them to generate brand awareness…

Abstract

Purpose

This interdisciplinary study aims to analyze how service organizations communicate sustainable beliefs in their social media narratives and use them to generate brand awareness, customer recognition and ongoing demand for sustainable service.

Design/methodology/approach

A two-phase exploratory analysis of 10,342 tweets from 2019–2020 was conducted by sustainable global corporations to identify best practices for their social media teams operating within a service-based business model. First, the significant themes were identified using an unguided machine learning approach of three types of firms: services, goods and mixed. Next, the full set of tweets with linguistic sentiment analysis was analyzed followed by a deeper view of the services-based organizations based on their strategic focus (business-to-business [B2B] versus mixed).

Findings

The findings indicate that tweets that appear to create the highest customer engagement are characterized as having high levels of analytical language, high clout (i.e. are socially relevant), a positive tone, a high number of words and a high number of words per sentence. On the other hand, having complex language in terms of six-letter words does not seem to associate with customer engagement. The last level of analysis shows that B2B services-based corporations with positive tone and higher word count exhibit higher levels of retweets. Implications include providing rational and informational tweets to increase engagement and highlight societal relevance.

Originality/value

Climate change has negative consequences on human and physical capital, and ecosystems across the globe. This study provides specific recommendations for how services corporations can increase their sustainable communications and actions.

Practical implications

The key implication of our research is that corporations must strategically design social media narratives about climate change as part of their online branding and communications process.

Details

Journal of Research in Interactive Marketing, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-7122

Keywords

Article
Publication date: 5 January 2024

Ah Lam Lee and Hyunsook Han

The main issue in the mass customization of apparel products is how to efficiently produce products of various sizes. A parametric pattern-making system is one of the notable ways…

Abstract

Purpose

The main issue in the mass customization of apparel products is how to efficiently produce products of various sizes. A parametric pattern-making system is one of the notable ways to rectify this issue, but there is a lack of information on the parametric design itself and its application to the apparel industry. This study compares and analyzes three types of parametric clothing pattern CAD (P-CAD) software currently in use to identify the characteristics of each, and suggest a basic guideline for efficient and adaptable P-CAD software in the apparel industry.

Design/methodology/approach

This study compared three different types of P-CAD software with different characteristics: SuperALPHA: PLUS(as known as YUKA), GRAFIS and Seamly2D. The authors analyzed the types and management methodologies of each software, according to the three essential components that refer to previous studies about parametric design systems: entities, constraints and parameters.

Findings

The results demonstrated the advantages and disadvantages of methodology in terms of three essential components of each software. Based on the results, the authors proposed five strategies for P-CAD development that can be applied to the mass customization of clothing.

Originality/value

This study is meaningful in that it consolidates and organizes information about P-CAD software that has previously been scattered. The framework used in this study has an academic value suggesting guidelines to analyze P-CAD systems.

Details

International Journal of Clothing Science and Technology, vol. 36 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 4 January 2024

Nishant Kulshrestha, Saurabh Agrawal and Deep Shree

Spare Parts Management (SPM) and Industry 4.0 has proven their importance. However, employment of Industry 4.0 solutions for SPM is at emerging stage. To address the issue, this…

Abstract

Purpose

Spare Parts Management (SPM) and Industry 4.0 has proven their importance. However, employment of Industry 4.0 solutions for SPM is at emerging stage. To address the issue, this article is aimed toward a systematic literature review on SPM in Industry 4.0 era and identification of research gaps in the field with prospects.

Design/methodology/approach

Research articles were reviewed and analyzed through a content-based analysis using four step process model. The proposed framework consists of five categories such as Inventory Management, Types of Spares, Circularity based on 6Rs, Performance Indicators and Strategic and Operational. Based on these categories, a total of 118 research articles published between 1998 and 2022 were reviewed.

Findings

The technological solutions of Industry 4.0 concepts have provided numerous opportunities for SPM. Industry 4.0 hi-tech solutions can enhance agility, operational efficiency, quality of product and service, customer satisfaction, sustainability and profitability.

Research limitations/implications

The review of articles provides an integrated framework which recognizes implementation issues and challenges in the field. The proposed framework will support academia and practitioners toward implementation of technological solutions of Industry 4.0 in SPM. Implementation of Industry 4.0 in SPM may help in improving the triple bottom line aspect of sustainability which can make significant contribution to academia, practitioners and society.

Originality/value

The examination uncovered a scarcity of research in the intersection of SPM and Industry 4.0 concepts, suggesting a significant opportunity for additional investigative efforts.

Details

Journal of Quality in Maintenance Engineering, vol. 30 no. 1
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 25 December 2023

Guodong Sa, Haodong Bai, Zhenyu Liu, Xiaojian Liu and Jianrong Tan

The assembly simulation in tolerance analysis is one of the most important steps for the tolerance design of mechanical products. However, most assembly simulation methods are…

107

Abstract

Purpose

The assembly simulation in tolerance analysis is one of the most important steps for the tolerance design of mechanical products. However, most assembly simulation methods are based on the rigid body assumption, and those assembly simulation methods considering deformation have a poor efficiency. This paper aims to propose a novel efficient and precise tolerance analysis method based on stable contact to improve the efficiency and reliability of assembly deformation simulation.

Design/methodology/approach

The proposed method comprehensively considers the initial rigid assembly state, the assembly deformation and the stability examination of assembly simulation to improve the reliability of tolerance analysis results. The assembly deformation of mating surfaces was first calculated based on the boundary element method with optimal initial assembly state, then the stability of assembly simulation results was assessed by the density-based spatial clustering of applications with noise algorithm to improve the reliability of tolerance analysis. Finally, combining the small displacement torsor theory, the tolerance scheme was statistically analyzed based on sufficient samples.

Findings

A case study of a guide rail model demonstrated the efficiency and effectiveness of the proposed method.

Research limitations/implications

The present study only considered the form error when generating the skin model shape, and the waviness and the roughness of the matching surface were not considered.

Originality/value

To the best of the authors’ knowledge, the proposed method is original in the assembly simulation considering stable contact, which can effectively ensure the reliability of the assembly simulation while taking into account the computational efficiency.

Details

Robotic Intelligence and Automation, vol. 44 no. 1
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 25 October 2023

Lucia Regina and José Aguiomar Foggiatto

Breast cancer is the most diagnosed type of cancer in the world, and mastectomies to remove tumors are still common. An external breast prosthesis (EBP) can be used to minimize…

Abstract

Purpose

Breast cancer is the most diagnosed type of cancer in the world, and mastectomies to remove tumors are still common. An external breast prosthesis (EBP) can be used to minimize the asymmetry, due to the ablation. Some governments do not cover costs of that assistive technology, and women end up using socks and fabric pockets filled with seeds, to simulate the volume lost in the surgery. This study aims to offer to those women a decent solution, ergonomic, but still affordable.

Design/methodology/approach

The authors interviewed 20 mastectomized Brazilian women, listened to their relate and 3D scanned them, to give rise to personalized external lightweight breast prostheses. The authors used free software for computer-aided design and computer-aided manufacturing, and low-cost 3D printers. From the strategy of bespoke products, this study generalized the method, to conceive mass customized prostheses, in a compromise solution that reduces personalization, conserving the best features of design.

Findings

This study achieved a method to manufacture ergonomic, bespoke external breast prostheses, using low-cost technology. Previous literature made them using expensive scanners, software and printers.

Research limitations/implications

The authors validated this method during pandemic, which restricted the number of patients the authors could have access to. This impacted authors’ possibility to work on matching the color of the final product and real skin. The authors understood, though, that precision of color, in the final product, is challenging, because of the peculiar aspects of human skin.

Originality/value

Using the method the authors proposed, personalized external breast prostheses can be manufactured using low-cost resources, democratizing better quality of life for more breast cancer survivors.

1 – 10 of 11