Search results

11 – 20 of 154
Article
Publication date: 1 December 2023

Zhe Du, Changjie Chen and Xinhou Wang

Stab-resistant body armor (SRBA) is used to protect the body from sharp knives. However, most SRBA materials currently have the disadvantages of large weight and thickness. This…

Abstract

Purpose

Stab-resistant body armor (SRBA) is used to protect the body from sharp knives. However, most SRBA materials currently have the disadvantages of large weight and thickness. This paper aims to prepare lightweight and high-performance SRBA by 3D printing truss structure and resin-filling method.

Design/methodology/approach

The stab resistance truss structure was prepared by the fused deposition modeling method, and the composite structure was formed after filling with resin for dynamic and quasi-static stab tests. The optimized structural plate can meet the standard GA68-2019. Digital image correlation technology was used to analyze the local strain changes during puncture. The puncture failure mode was summarized by the final failure morphologies. The explicit dynamics module in ANSYS Workbench was used to analyze the design of the overlapped structure stab resistance process in this paper.

Findings

The stab resistance performance of the 3D-printed structural plate is affected by the internal filling pattern. The stab resistance performance of 3D-printed structural parts was significantly improved after resin filling. The 50%-diamond-PLA-epoxy, with a thickness of only 5 mm was able to meet the stab resistance standard. Resins are used to increase the strength and hardness of the material but also to increase crack propagation and reduce the toughness of the material. The overlapping semicircular structure was inspired by the exoskeleton structure of the demon iron beetle, which improved the stab resistance between gaps. The truss structure can effectively disperse stress for toughening. The filled resin was reinforced by absorbing impact energy.

Originality/value

The 3D-printed resin-filled truss structure can be used to prepare high-performance stab resistance structural plates, which balance the toughness and strength of the overall structure and ultimately reduce the thickness and weight of the SRBA.

Open Access
Article
Publication date: 14 January 2020

Antonio Armillotta

This paper aims to investigate the feasibility of adding macro-textures to triangle meshes for additive manufacturing (AM) focusing on possible time and quality issues in both…

Abstract

Purpose

This paper aims to investigate the feasibility of adding macro-textures to triangle meshes for additive manufacturing (AM) focusing on possible time and quality issues in both software processing and part fabrication.

Design/methodology/approach

A demonstrative software tool was developed to apply user-selected textures to existing meshes. The computational procedure is a three-dimensional extension of the solid texturing method used in computer graphics. The tool was tested for speed and quality of results, considering also the pre- and post-processing operations required. Some textured meshes were printed by different processes to test build speed and quality.

Findings

The tool can handle models with realistic complexity in acceptable computation times. Parts are built without difficulties or extra-costs achieving a good aesthetic yield of the texture.

Research limitations/implications

The tool cannot reproduce sample patterns but requires the development of a generation algorithm for different type of textures. Mesh processing operations may take a long time when very fine textures are added to large parts.

Practical implications

Direct texturing can help obtain parts with aesthetic or functional textures without the need for surface post-treatments, which can be especially difficult and expensive for plastic parts.

Originality/value

The proposed method improves the uniformity and consistency of textures compared to existing approaches, and can support future systematic studies on the detail resolution of AM processes.

Article
Publication date: 25 October 2018

Jerzy Bochnia and Slawomir Blasiak

The purpose of this paper was to verify the possibility of applying differential calculus of incomplete order to describe relaxation of the material obtained using selective laser…

Abstract

Purpose

The purpose of this paper was to verify the possibility of applying differential calculus of incomplete order to describe relaxation of the material obtained using selective laser sintering (SLS) technology.

Design/methodology/approach

The samples were made using the incremental technology for three print directions. Relaxation tests were conducted. The theoretical curves, which are the solution of the equation describing the five-parameter Maxwell-Wiechert model for derivatives in relation to the total time of complete order and fractional order, were adjusted to the obtained experimental curves.

Findings

The SLS technology creates new possibilities regarding modelling polymeric elements which might be applied as functional models (products). Therefore, it is necessary to conduct an in-depth study of their properties, including relaxation properties, which is associated with the necessity to use proper mathematical tools to describe those properties. The differential calculus of incomplete order was applied herein to describe the anisotropy of relaxation properties because of the print direction in relation to the relaxation curves adjusted with the five-parameter Maxwell-Wiechert model.

Research limitations/implications

As a result of the conducted considerations, the authors obtained the dependencies describing the anisotropy of relaxation properties with the use of coefficients alpha and beta, which stand for the derivative order of the differential equation, whereas coefficient kappa stands for the translation coefficient which is an innovative application of this type of mathematical apparatus.

Practical implications

The developed method might be applied to describe the anisotropy of a broader group of materials manufactured with the use of incremental technologies.

Originality/value

The application of the differential calculus of incomplete order to describe the anisotropy of the materials manufactured from polyamide powder using the SLS technology is a distinctive feature of this paper. A crucial cognitive element of the conducted research is the fact which confirms that the dynamic viscosity coefficients have the greatest impact on the anisotropy of material properties depending on the print directions.

Details

Rapid Prototyping Journal, vol. 25 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 9 March 2010

G. Berti, L. D'Angelo, A. Gatto and L. Iuliano

This paper aims to develop a deep characterization of PA‐Al2O3 composite for selective laser sintering (SLS). Tension test is used to determine main mechanical characteristics of…

1382

Abstract

Purpose

This paper aims to develop a deep characterization of PA‐Al2O3 composite for selective laser sintering (SLS). Tension test is used to determine main mechanical characteristics of the material, both at room temperature and at 100°C. An accurate knowledge of the parts' performances as a function of the building orientation, is fundamental to understand the manufacturing anisotropy. Particular attention is dedicated to the joining and failure micromechanisms ruling the macroscopic characteristics, on the basis of the knowledge developed by the authors on SLS of both metal and polymeric powders.

Design/methodology/approach

Specimens have been built with different orientations in regard to powder deposition plane and laser path. Tension test is used to determine main mechanical characteristics of the material, both at room temperature and at 100°C. A particular attention is dedicated to the joining and failure micromechanisms ruling the macroscopic characteristics of the composite material by means of optical and scanning electron microscope (SEM) observations.

Findings

The sintered material shows an evident anisotropy in the growth direction (z‐axis), as well as it seems to be not sensitive to the sintering direction at room temperature (x, y, xy). At 100°C the effect of sintering direction becomes more evident and a different behaviour results considering x‐ and y‐direction, respectively. Accurate SEM characterization has been carried out to understand the effect of the manufacturing anisotropy on the mechanical performances, both in terms of additive construction and laser sintering strategy. The observation of the rupture surfaces showed that cracks originate from the external surface and propagate initially by the ductile failure of the polymeric matrix, up to the sudden fracture of the whole section.

Originality/value

Previous studies concerning polyamide charged parts confirm the importance of fabrication parameters and geometry on the final performances, due to anisotropic heat supply and transfer phenomena. The originality of the paper is in the investigation on both at room temperature and at 100°C. Moreover, a model is proposed where it is hypothesized that the layer‐by‐layer construction is only marginally responsible of the anisotropic behaviour of the material.

Details

Rapid Prototyping Journal, vol. 16 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 28 January 2019

C.D. James and Sandeep Mondal

The purpose of this paper is to address the gap between definition and practical aspects of production efficiency in mass customization (MC). The paper summarizes all major issues…

1744

Abstract

Purpose

The purpose of this paper is to address the gap between definition and practical aspects of production efficiency in mass customization (MC). The paper summarizes all major issues impacting efficiency in MC. Also, the paper reviews metrics, relationship between various parameters and provides a best practices benchmark toolkit to achieve higher machine efficiencies.

Design/methodology/approach

The paper identified and categorized multiple challenges impacting machine efficiency in MC through a literature review spanning over three decades, and also ranked the identified issue-based parameters. Top issues were found varying across different types of industries identified through the review. Metrics pertaining to efficiency and degree of MC are reviewed in the paper. A chronological review of issues is presented, and a chain diagram is built in the paper. Toolkit of best practices created with solution strategies and tools are summarized through the review.

Findings

The paper found that MC reasonably impacts machine efficiency which needs to be addressed. Major issues through literature review-based ranking are uncovered, and worldwide research trend and comparison are presented. Active research in this area is observed to be at its peak since 2010. The extensive use of strategies and benchmark toolkit for improving efficiency are summarized.

Research limitations/implications

Ranking of issues has been done through a literature review; hence, there can be skewness depending on the frequency of issues researched by various authors in various areas of industries.

Practical implications

This paper is useful for manufacturing managers and companies willing to increase the size of their product portfolio and choices within their available resources without compromising machine efficiencies and, thereby, the cost. The identified issues help in providing a comprehensive issue list to the academia.

Originality/value

This paper describes what is believed to be the first study that explicitly examines the issues faced in achieving machine efficiency while manufacturing in an MC environment.

Details

Benchmarking: An International Journal, vol. 26 no. 2
Type: Research Article
ISSN: 1463-5771

Keywords

Article
Publication date: 27 November 2018

Zheng Gong, Xinming Qian and Mengqi Yuan

Stab-resistant body armor (SRBA) can protect the human body from injury as a result of stabbing by sharp projectiles. However, in its current design SRBA, it has not been widely…

Abstract

Purpose

Stab-resistant body armor (SRBA) can protect the human body from injury as a result of stabbing by sharp projectiles. However, in its current design SRBA, it has not been widely adopted for use, because of its weight and poor flexibility. Herein, this paper aims to detail a new type of SRBA that is inspired by the armor plating of mammals and is fabricated using laser sintering (LS) technology.

Design/methodology/approach

This new type of SRBA was fabricated using LS technology. The laser sintered SRBA was subjected to a stab resistance performance test that conformed to the GA 68-2008 Chinese National Standard. The stab resistance response of the novel structured, stab resistance test plates in this study was analyzed using the using the AUTODYN explicit module in ANSYS-Workbench.

Findings

The structure of the novel stab resistance plate was designed and the optimum structural parameters were tested, discussed and achieved. The mechanism of dissipation of the impact energy by the pyramidal structures of the novel SRBA was studied, and it was found that this structure dispersed the kinetic energy of the knife and minimized the structural damage to the plate. Interlinks inspired by the pangolin hierarchy structure were designed and used to fabricate a large piece of laser sintered body armor.

Originality/value

High-performance laser sintered stab resistance plate was produced via the material and structure studies, which could reduce 40 per cent weight on the stab resistance body armor and increase the wearability.

Details

Rapid Prototyping Journal, vol. 25 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 2 January 2018

Barry Haworth, John R. Tyrer and Zhou Zhou

There is a requirement to match selective laser melting (SLM) technologies to a wider range of polymeric materials, as the existing market for SLM powders is dominated by…

Abstract

Purpose

There is a requirement to match selective laser melting (SLM) technologies to a wider range of polymeric materials, as the existing market for SLM powders is dominated by polyamide PA12. Drivers include the tailoring of physical properties to individual applications or cost reduction. Polypropylene (PP) currently has limited use in SLM; so, this paper aims to explore the potential use of PP materials of varying molecular weight (Mw).

Design/methodology/approach

PP polymers of differing Mw were characterised using a range of analytical techniques, including differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), rotational rheometry and real-time hot-stage (optical) microscopy.

Findings

The techniques are sufficiently sensitive to distinguish Mw effects, notably in terms of material viscosity. The stable sintering region for SLM has been defined clearly. Some success was achieved in melting parts using all grades of PP, including higher Mw grades, which potentially offer improved mechanical performance.

Research limitations/implications

The range of techniques (DSC, oxidative induction time and TGA) form an effective analytical package with which to consider new polymeric materials for SLM.

Practical implications

High-Mw PP polymers, in tape or powder form, have potential use in SLM processes, providing scope to enhance part properties in future.

Originality/value

This is believed to be the first in-depth study noting the influence of PP Mw on important physical performance in a proprietary SLM process, using holographic beam manipulation.

Details

Rapid Prototyping Journal, vol. 24 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 13 February 2017

Jennifer Innis, Jan Barnsley, Whitney Berta and Imtiaz Daniel

Health literate discharge practices meet patient and family health literacy needs in preparation for care transitions from hospital to home. The purpose of this paper is to…

Abstract

Purpose

Health literate discharge practices meet patient and family health literacy needs in preparation for care transitions from hospital to home. The purpose of this paper is to measure health literate discharge practices in Ontario hospitals using a new organizational survey questionnaire tool and to perform psychometric testing of this new survey.

Design/methodology/approach

This survey was administered to hospitals in Ontario, Canada. Exploratory factor analysis and reliability testing were performed.

Findings

The participation rate of hospitals was 46 percent. Exploratory factor analysis demonstrated that there were five factors. The survey, and each of the five factors, had moderate to high levels of reliability.

Research limitations/implications

There is a need to expand the focus of further research to examine the experiences of patients and families. Repeating this study with a larger sample would facilitate further survey development.

Practical implications

Measuring health literate discharge practices with an organizational survey will help hospital managers to understand their performance and will help direct quality improvement efforts to improve patient care at hospital discharge and to decrease hospital readmission.

Originality/value

There has been little research into how patients are discharged from hospital. This study is the first to use an organizational survey tool to measure health literate discharge practices.

Details

International Journal of Health Care Quality Assurance, vol. 30 no. 1
Type: Research Article
ISSN: 0952-6862

Keywords

Article
Publication date: 11 March 2014

Grazielle de Oliveira Setti, Jorge Vicente Lopes da Silva, Marcelo Fernandes de Oliveira, Izaque Alves Maia, Dosil Pereira de Jesus, Raluca Savu, Thebano Emilio de Almeida Santos, Rita de Cássia Zacardi de Souza and Ednan Joanni

The purpose of this paper is to characterize polyamide parts prepared by the SLS process using techniques that are dependent on surface properties and compare the results to…

Abstract

Purpose

The purpose of this paper is to characterize polyamide parts prepared by the SLS process using techniques that are dependent on surface properties and compare the results to density measurements in order to assess which technique better reflects the degree of densification achieved using different laser power levels.

Design/methodology/approach

Fabrication of Nylon 12 (Duraform PA) samples and their characterization by apparent density measurements, perfilometry, Raman spectroscopy, scanning electron microscopy, specific surface area and contact angle measurements.

Findings

Methods dependent on surface analysis are not suitable indicators of the degree of sample densification. Among the surface methods, the results from Raman spectroscopy are the ones with the best performance. Incipient sintering of the superficial layers and raw material powder on the surface, inherent to the parts made by the SLS process, strongly interfere with the characterization.

Originality/value

Quantitative comparison of a number of surface probing methods for monitoring densification of SLS parts. Characterization of sample surfaces with and without raw material powder.

Details

Rapid Prototyping Journal, vol. 20 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 11 January 2013

Barry Haworth, Neil Hopkinson, David Hitt and Xiaotao Zhong

Laser sintering kinetics and part reliability are critically dependent on the melt viscosity of materials, including polyamide 12 (PA‐12). The purpose of this paper is to…

1512

Abstract

Purpose

Laser sintering kinetics and part reliability are critically dependent on the melt viscosity of materials, including polyamide 12 (PA‐12). The purpose of this paper is to characterise the viscosity of PA‐12 powders using alternative scientific methods: constrained boundary flows (capillary rheometry) and rotational rheometry.

Design/methodology/approach

Various PA‐12 powders were selected and characterised by both techniques. Measurement of molecular weight was also carried out to interpret the viscosity data.

Findings

Results demonstrate conventional pseudoplastic flow in all PA‐12 materials. Zero‐shear viscosity has been quantified by rotational rheometry; a notable observation is the striking difference between virgin/used PA‐12. This is interpreted in terms of molecular weight and chain structure modifications, arising from polycondensation of PA‐12 held at the bed temperature during laser sintering.

Research limitations/implications

Accurate zero‐shear viscosity data provide scope for use in predictive computational models for laser sintering processes. Careful sample preparation and equipment operation are critical prerequisites for accurate rheological characterisation of PA‐12 powders.

Practical implications

Differences in flow behaviour and molecular structure allow prediction and deeper understanding of process‐property relationships in laser sintering, giving potential for further optimisation of material specification and in‐process machine parameter control.

Originality/value

This is believed to be the first time that techniques other than melt flow rate (MFR) have been reported to measure the viscosity of PA‐12 in a laser sintering context, noting the effects of pre‐drying and molecular weight, then predicting differences between virgin/used powders in practical sintering behaviour.

Details

Rapid Prototyping Journal, vol. 19 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

11 – 20 of 154