Search results

1 – 10 of over 1000
Article
Publication date: 2 November 2010

Esmail M.A. Mokheimer, S. Sami and B.S. Yilbas

This paper's aim is to examine flow and heat transfer through vertical channels between parallel plates, which is of prime importance in the design of cooling systems for…

Abstract

Purpose

This paper's aim is to examine flow and heat transfer through vertical channels between parallel plates, which is of prime importance in the design of cooling systems for electronic equipment such as that of finned cold plates in general, plate‐and‐frame heat exchangers, etc.

Design/methodology/approach

Numerical and analytical solutions are presented to investigate the heat transfer enhancement and the pressure drop reduction due to buoyancy effects (for buoyancy‐aided flow) for the developing laminar mixed convection in vertical channel between parallel plates in the vicinity of the critical values of the buoyancy parameter (Gr/Re)crt that are obtained analytically. The numerical solutions are presented for a wide range of the buoyancy parameters Gr/Re that cover both of buoyancy‐opposed and buoyancy‐aided flow situations under each of the isothermal boundary conditions under investigation.

Findings

Buoyancy parameters greater than the critical values result in building‐up the pressure downstream of the entrance such that the vertical channel might act as a thermal diffuser with possible incipient flow reversal. Locations at which the pressure gradient vanishes and the locations at which the pressure‐buildup starts have been numerically obtained and presented for all the investigated cases.

Research limitations/implications

The study is limited to the laminar flow situation.

Practical implications

The results clearly show that for buoyancy‐aided flow, the increase of the buoyancy parameter enhances the heat transfer and reduces the pressure drop across the vertical channel. These findings are very useful for cooling channel or chimney designs.

Originality/value

The study is original and presents new findings, since none of the previous studies reported the conditions for which pressure buildup might take place due to mixed convection in vertical channels between parallel plates.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 20 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 11 May 2020

Nga-wun Li, Chu-po Ho, Kit-lun Yick and Jin-yun Zhou

Net buoyant force is a crucial factor affecting the functional performance of clothing for water safety. This study aims to develop an alternative method for measuring the net…

Abstract

Purpose

Net buoyant force is a crucial factor affecting the functional performance of clothing for water safety. This study aims to develop an alternative method for measuring the net buoyant force of various buoyant materials such as buoyant fabrics, on a small scale in a more accurate and efficient way than the existing method.

Design/methodology/approach

The net buoyant forces of buoyant materials with different thicknesses and forms were determined and compared using three methods. In Method 1, the traditional method involving mathematical calculations was used; Method 2 involved using the buoyancy-measuring device from the study of Jin et al. (2018) and Method 3 involved using an alternative buoyancy-measuring system that simulates the actual situation of using buoyant swimwear by measuring the force needed to submerge the buoyant material in water at a standard depth. The net buoyant forces of 22 buoyant materials were measured and compared to test these three methods. The accuracy, reproducibility, sensitivity and validity of these methods were then statistically compared.

Findings

The results obtained with the alternative buoyancy-measuring system had higher accuracy, reproducibility and validity than the results obtained through mathematical calculations. The sensitivity of the buoyancy-measuring system (Methods 2 and 3) was higher than that of the traditional method involving calculations (Method 1).

Originality/value

An alternative method is proposed to measure the net buoyant force of buoyant materials on a small scale with higher accuracy, reproducibility and sensitivity.

Details

Research Journal of Textile and Apparel, vol. 24 no. 2
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 3 April 2007

Youssef Azizi, Brahim Benhamou, Nicolas Galanis and Mohammed El‐Ganaoui

The objective of the present study is to investigate numerically the effects of thermal and buoyancy forces on both upward flow (UF) and downward flow (DF) of air in a vertical…

Abstract

Purpose

The objective of the present study is to investigate numerically the effects of thermal and buoyancy forces on both upward flow (UF) and downward flow (DF) of air in a vertical parallel‐plates channel. The plates are wetted by a thin liquid water film and maintained at a constant temperature lower than that of the air entering the channel.

Design/methodology/approach

The solution of the elliptical PDE modeling the flow field is based on the finite volume method.

Findings

Results show that buoyancy forces have an important effect on heat and mass transfers. Cases with evaporation and condensation have been investigated for both UF and DF. It has been established that the heat transfer associated with these phase changes (i.e. latent heat transfer) may be more or less important compared with sensible heat transfer. The importance of these transfers depends on the temperature and humidity conditions. On the other hand, flow reversal has been predicted for an UF with a relatively high temperature difference between the incoming air and the walls.

Originality/value

Contrary to most studies in channel heat and mass transfer with phase change, the mathematical model considers the full elliptical Navier‐Stokes equations. This allows one to compute situations of flow reversal.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 17 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 August 1998

J.J. Hwang, T.Y. Lia and S.H. Chen

Turbulent fluid flow and heat transfer characteristics are analyzed numerically for fluids flowing through a rotating periodical two‐pass square channel. The smooth walls of this…

Abstract

Turbulent fluid flow and heat transfer characteristics are analyzed numerically for fluids flowing through a rotating periodical two‐pass square channel. The smooth walls of this two‐pass channel are subject to a constant heat flux. A two‐equation kε turbulence model with modified terms for Coriolis and rotational buoyancy is employed to resolve this elliptic problem. The duct through‐flow rate and rotating speed are fixed constantly; while the wall heat flux into the fluid is varied to examine the rotating buoyancy effect on the heat transfer and fluid flow characteristics. It is disclosed that the changes in local heat transfer due to the rotational buoyancy in the radially outward flow are more significant than those in the radially inward flow. However, the channel averaged heat transfer is altered slightly due to the rotational buoyancy in the both ducts. Whenever the buoyancy effects are sufficiently strong, the flow reversal appears over the leading face of the radially outward‐flow channel, and the radial distance for initiation of flow separation decreases with increasing the buoyancy parameter. A comparison of the present numerical results with the available experimental data by taking buoyancy into consideration is also presented.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 8 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 12 January 2010

P. Saikrishnan, Satyajit Roy, H.S. Takhar and R. Ravindran

The purpose of this paper is to study the influence of thermally stratified medium on a free convection flow from a sphere, which is rotating about the vertical axis, immersed in…

Abstract

Purpose

The purpose of this paper is to study the influence of thermally stratified medium on a free convection flow from a sphere, which is rotating about the vertical axis, immersed in a stably thermally stratified medium.

Design/methodology/approach

An implicit finite‐difference scheme in combination with the quasi‐linearization technique is applied to obtain the steady state non‐similar solutions of the governing boundary layer equations for flow and temperature fields.

Findings

The numerical results indicate that the heat transfer rate at the wall decreases significantly with an increasing thermal stratification parameter, but its effect on the skin friction coefficients is rather minimum. In fact, the presence of thermal stratification of the medium influences the heat transfer at wall to be in opposite direction, that is, from fluids to the wall above a certain height. The heat transfer rate increases but the skin frictions decrease with the increase of Prandtl number. In particular, the effect of buoyancy force is much more sensitive for low Prandtl number fluids (Pr = 0.7, air) than that of high Prandtl number fluids (Pr = 7, water). Also the skin friction in rotating direction is less sensitive to the buoyancy force as the buoyancy force acts in the streamwise direction for the present study of thermally stratified medium.

Research limitations/implications

The ambient temperature T∞∞ is assumed to increase linearly with height $h$. The viscous dissipation term, which is usually small for natural convection flows, has been neglected in the energy equation. The flow is assumed to be axi‐symmetric. The Boussinesq approximation is invoked for the fluid properties to relate density changes to temperature changes, and to couple in this way the temperature field to the flow field.

Practical implications

Free convection in a thermally stratified medium occurs in many environmental processes with temperature stratification, and in industrial applications within a closed chamber with heated walls. Also, free convections associated with heat rejection systems for long‐duration deep ocean powder modules where ocean environment is stratified are examples of such type.

Originality/value

The research presented in this paper investigates the free convection flow on a sphere, which is rotating with a constant angular velocity along its vertical axis in a stably thermally stratified fluid.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 20 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 September 2015

Sara Khamis, Daniel Oluwole Makinde and Yaw Nkansah-Gyekye

The purpose of this paper is to investigate the combined effects of buoyancy force and variable viscosity on unsteady flow and heat transfer of water-based nanofluid containing…

239

Abstract

Purpose

The purpose of this paper is to investigate the combined effects of buoyancy force and variable viscosity on unsteady flow and heat transfer of water-based nanofluid containing copper and alumina as nanoparticles through a porous pipe.

Design/methodology/approach

Using the Boussinesq and boundary-layer approximations with Buongiorno nanofluid model. The governing nonlinear partial differential equations for the continuity, momentum and energy balance are formulated. The equations obtained are solved numerically using a semi-discretization finite difference method (know) as method of line coupled with Runge-Kutta-Fehlberg integration scheme.

Findings

Numerical results for the skin-friction, heat transfer and for the velocity and temperature profiles are obtained. The results show that with suction, Cu-water produces higher skin friction and heat transfer rate than Al2O3-water. Both nanofluids velocity and temperature increase with a decrease in viscosity and an increase in buoyancy force intensity.

Practical implications

Buoyancy-driven flow and heat transfer in porous geometries has many significant applications in industrial and engineering such as, electrical and microelectronic equipments, solar-collectors, geothermal engineering, petroleum reservoirs, thermal buildings insulation. This work provides very important information for researchers on this subject.

Originality/value

This paper illustrates the effects of buoyancy force and temperature dependent on heat transfer and fluid flow problem using Cu-water and Al2O3-water nanofluids in a porous pipe.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 25 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 May 1995

C.C. Hao and J.N. Chung

This paper seeks to increase our understanding on the fluid mechanicsand heat transfer in a transitional mixed convection flow between twovertical plates. Direct numerical…

Abstract

This paper seeks to increase our understanding on the fluid mechanics and heat transfer in a transitional mixed convection flow between two vertical plates. Direct numerical simulation by the spectral method, with a weak formulation, is used to solve the transient 3–D Navier‐Stokes equations and energy equation. Initial disturbances consist of the finite‐amplitude 2–D Tollmien‐Schlichting wave and two 3–D oblique waves. The transition phenomena in a mixed‐convection flow can be significantly different from the isothermal flow. Disturbance competitions among different modes are also found to be different from those known for an isothermal flow. In a mixed‐convection flow, there exist thresholds for the low‐mode Fourier waves. The intensified vortices are concentrated left of the central surface between the two plates. Hairpin vortices are formed with high Ri. Based on the flow visualization, the λ vortices are found to be staggered on the surfaces parallel to the plates. The Ri number seems to be the main parameter governing the transition mechanism. The Nu number is found to increase during transition.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 5 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 22 December 2023

Priyadharsini Sivaraj and Sivaraj Chinnasamy

This paper aims to examine the thermal transmission and entropy generation of hybrid nanofluid filled containers with solid body inside. The solid body is seen as being both…

Abstract

Purpose

This paper aims to examine the thermal transmission and entropy generation of hybrid nanofluid filled containers with solid body inside. The solid body is seen as being both isothermal and capable of producing heat. A time-dependent non-linear partial differential equation is used to represent the transfer of heat through a solid body. The current study’s objective is to investigate the key properties of nanoparticles, external forces and particular attention paid to the impact of hybrid nanoparticles on entropy formation. This investigation is useful for researchers studying in the area of cavity flows to know features of the flow structures and nature of hybrid nanofluid characteristics. In addition, a detailed entropy generation analysis has been performed to highlight possible regimes with minimal entropy generation rates. Hybrid nanofluid has been proven to have useful qualities, making it an attractive coolant for an electrical device. The findings would help scientists and engineers better understand how to analyse convective heat transmission and how to forecast better heat transfer rates in cutting-edge technological systems used in industries such as heat transportation, power generation, chemical production and passive cooling systems for electronic devices.

Design/methodology/approach

Thermal transmission and entropy generation of hybrid nanofluid are analysed within the enclosure. The domain of interest is a square chamber of size L, including a square solid block. The solid body is considered to be isothermal and generating heat. The flow driven by temperature gradient in the cavity is two-dimensional. The governing equations, formulated in dimensionless primitive variables with corresponding initial and boundary conditions, are worked out by using the finite volume technique with the SIMPLE algorithm on a uniformly staggered mesh. QUICK and central difference schemes were used to handle convective and diffusive elements. In-house code is developed using FORTRAN programming to visualize the isotherms, streamlines, heatlines and entropy contours, which are handled by Tecplot software. The influence of nanoparticles volume fraction, heat generation factor, external magnetic forces and an irreversibility ratio on energy transport and flow patterns is examined.

Findings

The results show that the hybrid nanoparticles concentration augments the thermal transmission and the entropy production increases also while the augmentation of temperature difference results in a diminution of entropy production. Finally, magnetic force has the significant impact on heat transfer, isotherms, streamlines and entropy. It has been observed that the external magnetic force plays a good role in thermal regulations.

Research limitations/implications

Hybrid nanofluid is a desirable coolant for an electrical device. Various nanoparticles and their combinations can be analysed. Ferro-copper hybrid nanofluid considered with the help of prevailing literature review. The research would benefit scientists and engineers by improving their comprehension of how to analyses convective heat transmission and forecast more accurate heat transfer rates in various fields.

Practical implications

Due to its helpful characteristics, ferrous-copper hybrid nanofluid is a desirable coolant for an electrical device. The research would benefit scientists and engineers by improving their comprehension of how to analyse convective heat transmission and forecast more accurate heat transfer rates in cutting-edge technological systems used in sectors like thermal transportation, cooling systems for electronic devices, etc.

Social implications

Entropy generation is used for an evaluation of the system’s performance, which is an indicator of optimal design. Hence, in recent times, it does a good engineering sense to draw attention to irreversibility under magnetic force, and it has an indispensable impact on investigation of electronic devices.

Originality/value

An efficient numerical technique has been developed to solve this problem. The originality of this work is to analyse convective energy transport and entropy generation in a chamber with internal block, which is capable of maintaining heat and producing heat. Effects of irreversibility ratio are scrutinized for the first time. Analysis of convective heat transfer and entropy production in an enclosure with internal isothermal/heat generating blocks gives the way to predict enhanced heat transfer rate and avoid the failure of advanced technical systems in industrial sectors.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 22 March 2021

Z.B. Xing, Xingchao Han, Hanbing Ke, Q.G. Zhang, Zhiping Zhang, Huijin Xu and Fuqiang Wang

A combination of highly conductive porous media and nanofluids is an efficient way for improving thermal performance of relevant applications. For precisely predicting the flow…

Abstract

Purpose

A combination of highly conductive porous media and nanofluids is an efficient way for improving thermal performance of relevant applications. For precisely predicting the flow and thermal transport of nanofluids in porous media, the purpose of this paper is to explore the inter-phase coupling numerical methods.

Design/methodology/approach

Based on the lattice Boltzmann (LB) method, this study combines the convective flow, non-equilibrium thermal transport and phase interactions of nanofluids in porous matrix and proposes a new multi-phase LB model. The micro-scale momentum and heat interactions are especially analyzed for nanoparticles, base fluid and solid matrix. A set of three-phase LB equations for the flow/thermal coupling of base fluid, nanoparticles and solid matrix is established.

Findings

Distributions of nanoparticles, velocities for nanoparticles and the base fluid, temperatures for three phases and interaction forces are analyzed in detail. Influences of parameters on the nanofluid convection in the porous matrix are examined. Thermal resistance of nanofluid convective transport in porous structures are comprehensively discussed with the models of multi-phases. Results show that the Rayleigh number and the Darcy number have significant influences on the convective characteristics. The result with the three-phase model is mildly larger than that with the local thermal non-equilibrium model.

Originality/value

This paper first creates the multi-phase theoretical model for the complex coupling process of nanofluids in porous structures, which is useful for researchers and technicians in fields of thermal science and computational fluid dynamics.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 25 February 2021

Leo Lukose and Tanmay Basak

The purpose of this paper is to address various works on mixed convection and proposes 10 unified models (Models 1–10) based on various thermal and kinematic conditions of the…

Abstract

Purpose

The purpose of this paper is to address various works on mixed convection and proposes 10 unified models (Models 1–10) based on various thermal and kinematic conditions of the boundary walls, thermal conditions and/ or kinematics of objects embedded in the cavities and kinematics of external flow field through the ventilation ports. Experimental works on mixed convection have also been addressed.

Design/methodology/approach

This review is based on 10 unified models on mixed convection within cavities. Models 1–5 involve mixed convection based on the movement of single or double walls subjected to various temperature boundary conditions. Model 6 elucidates mixed convection due to the movement of single or double walls of cavities containing discrete heaters at the stationary wall(s). Model 7A focuses mixed convection based on the movement of wall(s) for cavities containing stationary solid obstacles (hot or cold or adiabatic) whereas Model 7B elucidates mixed convection based on the rotation of solid cylinders (hot or conductive or adiabatic) within the cavities enclosed by stationary or moving wall(s). Model 8 is based on mixed convection due to the flow of air through ventilation ports of cavities (with or without adiabatic baffles) subjected to hot and adiabatic walls. Models 9 and 10 elucidate mixed convection due to flow of air through ventilation ports of cavities involving discrete heaters and/or solid obstacles (conductive or hot) at various locations within cavities.

Findings

Mixed convection plays an important role for various processes based on convection pattern and heat transfer rate. An important dimensionless number, Richardson number (Ri) identifies various convection regimes (forced, mixed and natural convection). Generalized models also depict the role of “aiding” and “opposing” flow and combination of both on mixed convection processes. Aiding flow (interaction of buoyancy and inertial forces in the same direction) may result in the augmentation of the heat transfer rate whereas opposing flow (interaction of buoyancy and inertial forces in the opposite directions) may result in decrease of the heat transfer rate. Works involving fluid media, porous media and nanofluids (with magnetohydrodynamics) have been highlighted. Various numerical and experimental works on mixed convection have been elucidated. Flow and thermal maps associated with the heat transfer rate for a few representative cases of unified models [Models 1–10] have been elucidated involving specific dimensionless numbers.

Originality/value

This review paper will provide guidelines for optimal design/operation involving mixed convection processing applications.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of over 1000