Search results

1 – 10 of 24
Article
Publication date: 7 August 2017

Guangming Chen, Dingena L. Schott and Gabriel Lodewijks

Sliding wear is a common phenomenon in the iron ore handling industry. Large-scale handling of iron ore bulk-solids causes a high amount of volume loss from the surfaces of…

Abstract

Purpose

Sliding wear is a common phenomenon in the iron ore handling industry. Large-scale handling of iron ore bulk-solids causes a high amount of volume loss from the surfaces of bulk-solids-handling equipment. Predicting the sliding wear volume from equipment surfaces is beneficial for efficient maintenance of worn equipment. Recently, the discrete element method (DEM) simulations have been utilised to predict the wear by bulk-solids. However, the sensitivity of wear prediction subjected to DEM parameters has not been systemically investigated at single particle level. To ensure the wear predictions by DEM are accurate and stable, this study aims to conduct the sensitivity analysis at the single particle level.

Design/methodology/approach

In this research, pin-on-disc wear tests are modelled to predict the sliding wear by individual iron ore particles. The Hertz–Mindlin (no slip) contact model is implemented to simulate interactions between particle (pin) and geometry (disc). To quantify the wear from geometry surface, a sliding wear equation derived from Archard’s wear model is adopted in the DEM simulations. The accuracy of the pin-on-disc wear test simulation is assessed by comparing the predicted wear volume with that of the theoretical calculation. The stability is evaluated by repetitive tests of a reference case. At the steady-state wear, the sensitivity analysis is done by predicting sliding wear volumes using the parameter values determined by iron ore-handling conditions. This research is carried out using the software EDEM® 2.7.1.

Findings

Numerical errors occur when a particle passes a joint side of geometry meshes. However, this influence is negligible compared to total wear volume of a wear revolution. A reference case study demonstrates that accurate and stable results of sliding wear volume can be achieved. For the sliding wear at steady state, increasing particle density or radius causes more wear, whereas, by contrast, particle Poisson’s ratio, particle shear modulus, geometry mesh size, rotating speed, coefficient of restitution and time step have no impact on wear volume. As expected, increasing indentation force results in a proportional increase. For maintaining wear characteristic and reducing simulation time, the geometry mesh size is recommended. To further reduce simulation time, it is inappropriate using lower particle shear modulus. However, the maximum time step can be increased to 187% TR without compromising simulation accuracy.

Research limitations/implications

The applied coefficient of sliding wear is determined based on theoretical and experimental studies of a spherical head of iron ore particle. To predict realistic volume loss in the iron ore-handling industry, this coefficient should be experimentally determined by taking into account the non-spherical shapes of iron ore particles.

Practical implications

The effects of DEM parameters on sliding wear are revealed, enabling the selections of adequate values to predict sliding wear in the iron ore-handling industry.

Originality/value

The accuracy and stability to predict sliding wear by using EDEM® 2.7.1 are verified. Besides, this research accelerates the calibration of sliding wear prediction by DEM.

Details

Engineering Computations, vol. 34 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Content available

Abstract

Details

Anti-Corrosion Methods and Materials, vol. 53 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Content available
Article
Publication date: 11 January 2008

64

Abstract

Details

Anti-Corrosion Methods and Materials, vol. 55 no. 1
Type: Research Article
ISSN: 0003-5599

Article
Publication date: 1 May 1980

Black & Decker Professional has introduced four more “Tradesman” tools in the familiar saxe‐blue and silver livery. A redesigned large angle grinder succeeds the successful DN16…

Abstract

Black & Decker Professional has introduced four more “Tradesman” tools in the familiar saxe‐blue and silver livery. A redesigned large angle grinder succeeds the successful DN16 model, and a new range of three pistol/ palm‐grip power drills makes its appearance. They conform to current European standards of safety and interference suppression, whether in 240V AC or 115V AC form.

Details

Industrial Management, vol. 80 no. 5
Type: Research Article
ISSN: 0007-6929

Article
Publication date: 1 November 1982

Peter Stemp has joined the Paintmakers Association to become its first training specialist. As deputy director (Training) his initial task will be to visit every member to…

Abstract

Peter Stemp has joined the Paintmakers Association to become its first training specialist. As deputy director (Training) his initial task will be to visit every member to establish individual company training needs and thence to determine the needs of the industry. He has come to PA directly from the Industrial Society where he was in a senior position responsible for their entire operations in the southern half of the U.K.

Details

Pigment & Resin Technology, vol. 11 no. 11
Type: Research Article
ISSN: 0369-9420

Article
Publication date: 1 January 1993

KENNETH RUNESSON, MAREK KLISINSKI and RAGNAR LARSSON

Finite element implementations of the classical (stick‐slip) and a regularized (elastic‐slip) friction laws are compared for a class of non‐linear slip criteria. The fully…

Abstract

Finite element implementations of the classical (stick‐slip) and a regularized (elastic‐slip) friction laws are compared for a class of non‐linear slip criteria. The fully implicit method is used for integrating the friction law. A novel implementation of the stick‐slip law, that involved transformation to a non‐orthogonal coordinate system at each contact point, is assessed. A numerical comparison is carried out for a simple problem, that has previously been analysed in the literature. The convergence of the elastic‐slip law for increasing stiffness is evaluated in addition to convergence behaviour of the adopted Newton iterations for a given law.

Details

Engineering Computations, vol. 10 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Case study
Publication date: 7 December 2023

Chitra Singla and Bulbul Singh

Madan Mohanka set up Tega Industries Ltd in 1976 to manufacture abrasion-resistant rubber mill lining products used in the mining and mineral processing industries. In 2006, as…

Abstract

Madan Mohanka set up Tega Industries Ltd in 1976 to manufacture abrasion-resistant rubber mill lining products used in the mining and mineral processing industries. In 2006, as part of its inorganic expansion strategy, Tega bought a mill-liner company in South Africa. Buoyed by this growth, two acquisitions were made in Australia and Chile in the year 2011. However, post-acquisition, several managerial, legal and commercial problems crept up in its manufacturing facilities in Chile, leading to financial downturn in Tega's fortunes in 2016 and compelling it to either plan a revival or divest its interest in its Chilean Plant.

Details

Indian Institute of Management Ahmedabad, vol. no.
Type: Case Study
ISSN: 2633-3260
Published by: Indian Institute of Management Ahmedabad

Keywords

Article
Publication date: 1 February 1992

RICARDO DOBRY and AND TANG‐TAT NG

A general overview is presented on applications of the discrete element method (DEM) to granular media. A literature survey is performed of static and dynamic simulations using…

Abstract

A general overview is presented on applications of the discrete element method (DEM) to granular media. A literature survey is performed of static and dynamic simulations using random arrays of compliant particles, and forty‐two references published mostly in the last ten years are identified and categorized according to a number of relevant criteria. It is concluded that the interest in the use of the technique is rapidly increasing in the research and engineering community, with applications concentrated in soil mechanics, rock mechanics, grain flow and engineering problems. Additional studies and verifications of some numerical aspects of the DEM technique are suggested including parametric studies and comparisons. Program CONBAL‐2 (CONTACT + TRUBAL in 2D) developed by the authors based on TRUBAL created by Strack and Cundall, is described. CONBAL‐2 uses the complete Mindlin solution for the contact between two spheres and thus can be used for small strain and cyclic loading. The program is applied to study the cyclic response of uniform, medium dense to dense rounded quartz sand. Cyclic strain‐controlled loading at constant volume is applied to isotropically consolidated, random arrays of 531 spheres, using cyclic strains ranging from 10–4% to 10–1%. The calculated shear modulus, Gmax, constrained modulus, D, and Poisson's ratio at small strains are correlated with the confining pressure, the porosity of the array, and the coordination number. The calculated variations of secant modulus and damping ratio with cyclic strain compare favourably with the experimental results on sands compiled by Seed and Idriss. Finally, ‘pore water pressure buildup’ and cyclic stiffness degradation of the material with number of cycles is calculated at a cyclic strain of 10–1%, and the prediction is found to represent closely cyclic undrained experiments on sands. The existence of a threshold strain, yt ≈ 10–2%, found experimentally, is also predicted by the simulations.

Details

Engineering Computations, vol. 9 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 April 1987

A new four page full colour brochure describing products and services, is now available from South Marston based manufacturers and formulators of protective coatings, Robnorganic…

Abstract

A new four page full colour brochure describing products and services, is now available from South Marston based manufacturers and formulators of protective coatings, Robnorganic Systems Ltd.

Details

Pigment & Resin Technology, vol. 16 no. 4
Type: Research Article
ISSN: 0369-9420

Article
Publication date: 5 April 2011

Andrew Phillip Grima and Peter Wilhelm Wypych

The purpose of this paper is to examine several calibration techniques that have been developed to determine the discrete element method (DEM) parameters for slow and rapid…

1370

Abstract

Purpose

The purpose of this paper is to examine several calibration techniques that have been developed to determine the discrete element method (DEM) parameters for slow and rapid unconfined flow of granular conical pile formation. This paper also aims to discuss some of the methods currently employed to scale particle properties to reduce computational resources and time to solve large DEM models.

Design/methodology/approach

DEM models have been calibrated against simple bench‐scale experimental results to examine the validity of selected parameters for the contact, material and mechanical models to simulate the dynamic and static behaviour of cohesionless polyethylene pellets. Methods to determine quantifiable single particle parameters such as static friction and the coefficient of restitution have been highlighted. Numerical and experimental granular pile formation has been investigated using different slumping and pouring techniques to examine the dependency of the type of flow mechanism on the DEM parameters.

Findings

The proposed methods can provide cost effective and simple techniques to determine suitable input parameters for DEM models. Rolling friction and particle shape representation has shown to have a significant influence on the bulk flow characteristics via a sensitivity analysis and needs to be accessed based on the environmental conditions.

Originality/value

This paper describes several effective known and novel methodologies to characterise granular materials that are needed to accurately model granular flow using the DEM to provide valuable quantitative data. For the DEM to be a viable predictive tool in industrial applications which often contain huge quantities of particles with random particle shapes and irregular properties, quick and validated techniques to “tune” DEM models are necessary.

Details

Engineering Computations, vol. 28 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of 24