Search results

1 – 10 of 760
Article
Publication date: 14 September 2012

Dhafer Abdul Ameer Shnawah, Suhana Binti Mohd Said, Mohd Faizul Bin Mohd Sabri, Irfan Anjum Badruddin and Fa Xing Che

The purpose of this paper is to investigate the effects of small additions (0.1 and 0.3 wt%) of Fe on the bulk alloy microstructure and tensile properties of low Ag‐content…

Abstract

Purpose

The purpose of this paper is to investigate the effects of small additions (0.1 and 0.3 wt%) of Fe on the bulk alloy microstructure and tensile properties of low Ag‐content Sn‐1Ag‐0.5Cu lead‐free solder alloy.

Design/methodology/approach

Sn‐1Ag‐0.5Cu, Sn‐3Ag‐0.5Cu and Sn‐1Ag‐0.5Cu containing 1 and 3 wt.% Fe solder specimens were prepared by melting pure ingots of Sn, Ag, Cu and Fe in an induction furnace and subsequently remelting and casting to form flat dog‐bone shaped specimens for tensile testing. The solder specimens were subjected to tensile testing using an INSTRON tester with a loading rate 10‐3 s‐1. To obtain the microstructure, the solder samples were prepared by dicing, molding, grinding and polishing processes. The microstructural analysis was carried out using scanning electron microscopy/Energy Dispersive X‐ray spectroscopy. Electron backscatter diffraction (EBSD) analysis was used to identify the IMC phases.

Findings

In addition to large primary β‐Sn grains, the addition of Fe to the SAC105 alloy formed large circular shaped FeSn2 IMC particles located in the eutectic regions. This had a significant effect in reducing the elastic modulus and yield strength and maintaining the elongation at the SAC105 level. Moreover, the additions of Fe resulted in the inclusion of Fe in the Ag3Sn and Cu6Sn5 IMC particles. The additions of Fe did not have any significant effect on the melting behaviour.

Research limitations/implications

The paper provides a starting‐point for studying the effect of minor additions of Fe on the drop impact and thermal cycling reliability of SAC105 alloy considering the bulk alloy microstructure and tensile properties. Further investigations should be undertaken in the future.

Originality/value

The effect of Fe addition on the bulk alloy microstructure and tensile properties of the SAC105 alloy has been studied for the first time. Fe‐containing SAC105 alloy may have the potential to increase the drop impact and thermal cycling reliability compared with the standard SAC105 alloy.

Details

Soldering & Surface Mount Technology, vol. 24 no. 4
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 4 May 2012

Dhafer Abdul‐Ameer Shnawah, Mohd Faizul Mohd Sabri, Irfan Anjum Badruddin and Fa Xing Che

The purpose of this paper is to investigate the effect of Al addition on the bulk alloy microstructure and tensile properties of the low Ag‐content Sn‐1Ag‐0.5Cu (SAC105) solder…

Abstract

Purpose

The purpose of this paper is to investigate the effect of Al addition on the bulk alloy microstructure and tensile properties of the low Ag‐content Sn‐1Ag‐0.5Cu (SAC105) solder alloy.

Design/methodology/approach

The Sn‐1Ag‐0.5Cu‐xAl (x=0, 1, 1.5 and 2 wt.%) bulk solder specimens with flat dog‐bone shape were used for tensile testing in this work. The specimens were prepared by melting purity ingots of Sn, Ag, Cu and Al in an induction furnace. Subsequently, the molten alloys were poured into pre‐heated stainless steel molds, and the molds were naturally air‐cooled to room temperature. Finally, the molds were disassembled, and the dog‐bone samples were removed. The solder specimens were subjected to tensile testing on an INSTRON tester with loading rate 10−3 s−1. The microstructural analysis was carried out using scanning electron microscopy/Energy dispersive X‐ray spectroscopy. Electron Backscatter Diffraction (EBSD) analysis was used to identify the IMC phases. To obtain the microstructure, the solder samples were prepared by dicing, molding, grinding and polishing processes.

Findings

The addition of Al to the SAC105 solder alloy suppresses the formation of Ag3Sn and Cu6Sn5 IMC particles and leads to the formation of larger Al‐rich and Al‐Cu IMC particles and a large amount of fine Al‐Ag IMC particles. The addition of Al also leads to refining of the primary β‐Sn grains. The addition of Al results in a significant increase on the elastic modulus and yield strength. On the other hand, the addition of Al drastically deteriorates the total elongation.

Originality/value

The addition of Al to the low Ag‐content SAC105 solder alloy has been discussed for the first time. This work provides a starting‐point to study the effect of Al addition on the drop impact and thermal cycling reliability of the SAC105 alloy.

Details

Microelectronics International, vol. 29 no. 2
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 20 January 2012

Dhafer Abdul Ameer Shnawah, Mohd Faizul Bin Mohd Sabri, Irfan Anjum Badruddin and Suhana Said

The purpose of this paper is to discuss the reliability of board level Sn‐Ag‐Cu (SAC) solder joints in terms of both thermal cycling and drop impact loading conditions, and…

Abstract

Purpose

The purpose of this paper is to discuss the reliability of board level Sn‐Ag‐Cu (SAC) solder joints in terms of both thermal cycling and drop impact loading conditions, and further modification of the characteristics of low Ag‐content SAC solder joints using minor alloying elements to withstand both thermal cycle and drop impact loads.

Design/methodology/approach

The thermal cycling and drop impact reliability of different Ag‐content SAC bulk solder will be discussed from the viewpoints of mechanical and micro‐structural properties.

Findings

The best SAC composition for drop performance is not necessarily the best composition for optimum thermal cycling reliability. The content level of silver in SAC solder alloys can be an advantage or a disadvantage depending on the application, package and reliability requirements. The low Ag‐content SAC alloys with different minor alloying elements such as Mn, Ce, Bi, Ni and Ti display good performance in terms of both thermal cycling and drop impact loading conditions.

Originality/value

The paper details the mechanical and micro‐structural properties requirements to design a robust bulk SAC solder joint. These properties provide design and manufacturing engineers with the necessary information when deciding on a solder alloy for their specific application.

Article
Publication date: 26 March 2024

Haichao Wang, Xiaoqiang Liu, Zhanjiang Li, Li Chen, Pinqiang Dai and Qunhua Tang

The purpose of this paper is to study the high temperature oxidation behavior of Ti and C-added FeCoCrNiMn high entropy alloys (HEAs).

Abstract

Purpose

The purpose of this paper is to study the high temperature oxidation behavior of Ti and C-added FeCoCrNiMn high entropy alloys (HEAs).

Design/methodology/approach

Cyclic oxidation method was used to obtain the oxidation kinetic profile and oxidation rate. The microstructures of the surface and cross section of the samples after oxidation were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM).

Findings

The results show that the microstructure of the alloy mainly consisted of FCC (Face-centered Cubic Structure) main phase and carbides (M7C3, M23C6 and TiC). With the increase of Ti and C content, the microhardness, strength and oxidation resistance of the alloy were effectively improved. After oxidation at a constant temperature of 800 °C for 100 h, the preferential oxidation of chromium in the chromium carbide determined the early formation of dense chromium oxide layers compared to the HEAs substrate, resulting in the optimal oxidation resistance of the TC30 alloy.

Originality/value

More precipitated CrC can preferentially oxidize and rapidly form a dense Cr2O3 layer early in the oxidation, which will slow down the further oxidation of the alloy.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Content available
Article
Publication date: 14 September 2012

Martin Goosey

116

Abstract

Details

Soldering & Surface Mount Technology, vol. 24 no. 4
Type: Research Article
ISSN: 0954-0911

Article
Publication date: 16 November 2020

Riaz Muhammad and Umair Ali

This paper aims to analyze the effect of cerium addition on the microstructure and the mechanical properties of Tin-Silver-Copper (SAC) alloy. The mechanical properties and…

Abstract

Purpose

This paper aims to analyze the effect of cerium addition on the microstructure and the mechanical properties of Tin-Silver-Copper (SAC) alloy. The mechanical properties and refined microstructure of a solder joint are vital for the reliability and performance of electronics. SAC305 alloys are potential choices to use as lead-free solders because of their good properties as compared to the conventional Tin-Lead solder alloys. However, the presence of bulk intermetallic compounds (IMCs) in the microstructure of SAC305 alloys affects their overall performance. Therefore, addition of cerium restrains the growth of IMCs and refines the microstructure, hence improving the mechanical performance.

Design/methodology/approach

SAC305 alloy is doped with various composition of xCerium (x = 0.15, 0.35, 0.55, 0.75, 0.95) % by weight. Pure elements in powdered form were melted in the presence of argon with periodic stirring to ensure a uniform melted alloy. The molten alloy is then poured into a pre-heated die to obtain a tensile specimen. The yield strength and universal tensile strength were determined using a fixed strain rate of 10 mm per minute or 0.1667 mm s^(−1). The IMCs are identified using X-ray diffraction, whereas the elemental phase composition and microstructure evolution are, respectively, examined by using electron dispersive spectroscopy and scanning electron microscopy.

Findings

Improvement in the microstructure and mechanical properties is observed with 0.15% of cerium additions. The tensile test also showed that SAC305-0.15% cerium exhibits more stress-bearing capacity than other compositions. The 0.75% cerium doped alloy indicated some improvement because of a decrease in fracture dislocation regions, but microstructure refinement and the arrangement of IMCs are not those of 0.15% Ce. Different phases of Cu_6 Sn_5, Ag_3 Sn and CeSn_3 and ß-Sn are identified. Therefore, the addition of cerium in lower concentrations and presence of Ce-Sn IMCs improved the grain boundary structure and resulted refinement in the microstructure of the alloy, as well as an enhancement in the mechanical properties.

Originality/value

Characterization of microstructure and evaluation of mechanical properties are carried out to investigate the different composition of SAC305-xCerium alloys. Finally, an optimized cerium composition is selected for solder joint in electronics.

Details

Soldering & Surface Mount Technology, vol. 33 no. 4
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 27 May 2014

Ervina Efzan Mhd Noor and Amares Singh

The aim of the present study was to gather and review all the important properties of the Sn–Ag–Cu (SAC) solder alloy. The SAC solder alloy has been proposed as the alternative…

Abstract

Purpose

The aim of the present study was to gather and review all the important properties of the Sn–Ag–Cu (SAC) solder alloy. The SAC solder alloy has been proposed as the alternative solder to overcome the environmental concern of lead (Pb) solder. Many researchers have studied the SAC solder alloy and found that the properties such as melting temperature, wettability, microstructure and interfacial, together with mechanical properties, are better for the SAC solder than the tin – lead (SnPb) solders. Meanwhile, addition of various elements and nanoparticles seems to produce enhancement on the prior bulk solder alloy as well. These benefits suggest that the SAC solder alloy could be the next alternative solder for the electronic packaging industry. Although many studies have been conducted for this particular solder alloy, a compilation of all these properties regarding the SAC solder alloy is still not available for a review to say.

Design/methodology/approach

Soldering is identified as the metallurgical joining method in electronic packaging industry which uses filler metal, or well known as the solder, with a melting point < 425°C (Yoon et al., 2009; Ervina and Marini, 2012). The SAC solder has been developed by many methods and even alloying it with some elements to enhance its properties (Law et al., 2006; Tsao et al., 2010; Wang et al., 2002; Gain et al., 2011). The development toward miniaturization, meanwhile, requires much smaller solder joints and fine-pitch interconnections for microelectronic packaging in electronic devices which demand better solder joint reliability of SAC solder Although many studies have been done based on the SAC solder, a review based on the important characteristics and the fundamental factor involving the SAC solder is still not sufficient. Henceforth, this paper resolves in stating all its important properties based on the SAC solder including its alloying of elements and nanoparticles addition for further understanding.

Findings

Various Pb-free solders have been studied and investigated to overcome the health and environmental concern of the SnPb solder. In terms of the melting temperature, the SAC solder seems to possess a high melting temperature of 227°C than the Pb solder SnPb. Here, the melting temperature of this solder falls within the range of the average reflow temperature in the electronic packaging industry and would not really affect the process of connection. A good amendment here is, this melting temperature can actually be reduced by adding some element such as titanium and zinc. The addition of these elements tends to decrease the melting temperature of the SAC solder alloy to about 3°C. Adding nanoparticles, meanwhile, tend to increase the melting temperature slightly; nonetheless, this increment was not seemed to damage other devices due to the very slight increment and no drastic changes in the solidification temperature. Henceforth, this paper reviews all the properties of the Pb-free SAC solder system by how it is developed from overcoming environmental problem to achieving and sustaining as the viable candidate in the electronic packaging industry. The Pb-free SAC solder can be the alternative to all drawbacks that the traditional SnPb solder possesses and also an upcoming new invention for the future needs. Although many studies have been done in this particular solder, not much information is gathered in a review to give better understanding for SAC solder alloy. In that, this paper reviews and gathers the importance of this SAC solder in the electronic packaging industry and provides information for better knowledge.

Originality/value

This paper resolves in stating of all its important properties based on the SAC solder including its alloying of elements and nanoparticles addition for further understanding.

Details

Soldering & Surface Mount Technology, vol. 26 no. 3
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 19 September 2008

M. Reid, J. Punch, M. Collins and C. Ryan

The purpose of this paper is to examine the microstructure and evaluate the intermetallic compounds in the following lead‐free solder alloys: Sn98.5Ag1.0Cu0.5 (SAC105) Sn97.5Ag2.0

2101

Abstract

Purpose

The purpose of this paper is to examine the microstructure and evaluate the intermetallic compounds in the following lead‐free solder alloys: Sn98.5Ag1.0Cu0.5 (SAC105) Sn97.5Ag2.0Cu0.5 (SAC205) Sn96.5Ag3.0Cu0.5 (SAC305) and Sn95.5Ag4.0Cu0.5 (SAC405).

Design/methodology/approach

X‐ray diffraction (XRD) and scanning electron microscopy (SEM) were employed to identify the main intermetallics formed during solidification. Differential scanning calorimetry (DSC) was used to investigate the undercooling properties of each of the alloys.

Findings

By using XRD analysis in addition to energy dispersive spectroscopy (EDS) it was found that the main intermetallics were Cu6Sn5 and Ag3Sn in a Sn matrix. Plate‐like ε‐Ag3Sn intermetallics were observed for all four alloys. Solder alloys SAC105, SAC205 and SAC305 showed a similar microstructure, while SAC405 displayed a fine microstructure with intermetallic phases dense within the Sn matrix.

Originality/value

Currently, low‐silver content SAC alloys are being investigated due to their lower cost, however, the overall reliability of an alloy can be greatly affected by the microstructure and this should be taken into consideration when choosing an alloy. The size and number of Ag3Sn plate‐like intermetallics can affect the reliability as they act as a site for crack propagation.

Details

Soldering & Surface Mount Technology, vol. 20 no. 4
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 4 April 2022

Lina Syazwana Kamaruzzaman and Yingxin Goh

This paper aims to review recent reports on mechanical properties of Sn-Bi and Sn-Bi-X solders (where X is an additional alloying element), in terms of the tensile properties…

Abstract

Purpose

This paper aims to review recent reports on mechanical properties of Sn-Bi and Sn-Bi-X solders (where X is an additional alloying element), in terms of the tensile properties, hardness and shear strength. Then, the effects of alloying in Sn-Bi solder are compared in terms of the discussed mechanical properties. The fracture morphologies of tensile shear tested solders are also reviewed to correlate the microstructural changes with mechanical properties of Sn-Bi-X solder alloys.

Design/methodology/approach

A brief introduction on Sn-Bi solder and reasons to enhance the mechanical properties of Sn-Bi solder. The latest reports on Sn-Bi and Sn-Bi-X solders are combined in the form of tables and figures for each section. The presented data are discussed by comparing the testing method, technical setup, specimen dimension and alloying element weight percentage, which affect the mechanical properties of Sn-Bi solder.

Findings

The addition of alloying elements could enhance the tensile properties, hardness and/or shear strength of Sn-Bi solder for low-temperature solder application. Different weight percentage alloying elements affect differently on Sn-Bi solder mechanical properties.

Originality/value

This paper provides a compilation of latest report on tensile properties, hardness, shear strength and deformation of Sn-Bi and Sn-Bi-X solders and the latest trends and in-depth understanding of the effect of alloying elements in Sn-Bi solder mechanical properties.

Details

Soldering & Surface Mount Technology, vol. 34 no. 5
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 28 June 2022

Rizk Mostafa Shalaby and Musaeed Allzeleh

This study aims to study the impact of intermetallic compound on microstructure, mechanical characteristics and thermal behavior of the melt-spun Bi-Ag high-temperature lead-free…

Abstract

Purpose

This study aims to study the impact of intermetallic compound on microstructure, mechanical characteristics and thermal behavior of the melt-spun Bi-Ag high-temperature lead-free solder.

Design/methodology/approach

In this paper, a new group of lead-free high-temperature Pb-free solder bearing alloys with five weight percentages of different silver additions, Bi-Agx (x = 3.0, 3.5, 4.0, 4.5 and 5.0 Wt.%) have been developed by rapidly solidification processing (RSP) using melt-spun technique as a promising candidate for the replacement of conventional Sn-37Pb common solder. The effect of the addition of a small amount of Ag on the structure, microstructure, thermal and properties of Bi-Ag solder was analyzed by means of X-ray diffractometer, scanning electron microscopy, differential scanning calorimetry and Vickers hardness technique. Applying the RSP commonly results in departures from conventional microstructures, giving an improvement of grain refinement. Furthermore, the grain size of rhombohedral hexagonal phase Bi solid solution and cubic IMC Bi0.97Ag0.03 phase is refined by Ag addition. Microstructure analysis of the as soldered revealed that relatively uniform distribution, equiaxed refined grains of secondary IMC Bi0.97Ag0.03 particles about 10 µm for Bi-Ag4.5 dispersed in a Bi matrix. The addition of trace Ag led to a decrease in the solidus and liquidus temperatures of solder, meanwhile, the mushy zone is about 11.4°C and the melting of Sn-Ag4.5 solder was found to be 261.42°C which is lower compared with the Sn-Ag3 solder 263.60°C. This means that the silver additions into Bi enhance the melting point. The results indicate that an obvious change in electrical resistivity (?) at room temperature was noticed by the Ag addition. It was also observed that the Vickers microhardness (Hv) was increased with Ag increasing from 118 to 152 MPa. This study recommended the use of the Bi-Ag lead-free solder alloys for higher temperature applications.

Findings

Silver content is very important for the soldering process and solder joint reliability. Based on the present investigations described in this study, several conclusions were found regarding an evaluation of microstructural and mechanical deformation behavior of various Bi-Ag solders. The effect of Ag and rapid solidification on the melting characteristics, and microstructure of Bi-Ag alloys were studied. In addition, the mechanical properties of Bi with different low silver were investigated. From the present experimental study, the following conclusions can be drawn. The addition of Ag had a marked effect on the melting temperature of the lead-free solder alloys, it decreases the melting temperature of the alloy from 263.6 to 261.42°C. Bi-Ag solders are comprised of rhombohedral Hex. Bi solid solution and cubic Ag0.97Bi0.03 IMC is formed in the Bi matrix. The alloying of Ag could refine the primary Bi phase and the Bi0.97Ag0.03 IMC. With increasing Ag content, the microstructure of the Bi-Ag gradually changes from large dimples into tiny dimple-like structures. The refinement of IMC grains was restrained after silver particles were added into the matrix. The inhibition effect on the growth of IMC grains was most conspicuous when solder was doped with Ag particles. As a result, the Vickers microhardness of the Bi-Ag lead-free solder alloys was enhanced by more than 100% ranging from 118.34 to 252.95 MPa. Bi-Ag high-temperature lead-free solders are a potential candidate for replacing the tin-lead solder (Sn-37Pb) materials which are toxic to human and the environment and has already been banned.

Originality/value

This study recommended the use of the Bi-Ag lead-free solder alloys for high-temperature applications.

Details

Soldering & Surface Mount Technology, vol. 35 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

1 – 10 of 760