Search results

1 – 10 of over 2000
Open Access
Article
Publication date: 20 March 2017

Tristan Gerrish, Kirti Ruikar, Malcolm Cook, Mark Johnson and Mark Phillip

The purpose of this paper is to present a review of the implications building information modelling (BIM) is having on the building energy modelling (BEM) and design of buildings

9613

Abstract

Purpose

The purpose of this paper is to present a review of the implications building information modelling (BIM) is having on the building energy modelling (BEM) and design of buildings. It addresses the issues surrounding exchange of information throughout the design process, and where BIM may be useful in contributing to effective design progression and information availability.

Design/methodology/approach

Through review of current design procedures and examination of the concurrency between architectural and thermophysical design modelling, a procedure for information generation relevant to design stakeholders is created, and applied to a high-performance building project currently under development.

Findings

The extents of information key to the successful design of a buildings energy performance in relation to its architectural objectives are given, with indication of the level of development required at each stage of the design process.

Practical implications

BIM offers an extensible medium for parametric information storage, and its implementation in design development offers the capability to include BEM parameter-integrated construction information. The extent of information required for accurate BEM at stages of a building’s design is key to understanding how best to record performance information in a BIM environment.

Originality/value

This paper contributes to the discussion around the integration of concurrent design procedures and a common data environment. It presents a framework for the creation and dissemination of information during design, exemplifies this on a real building project and evaluates the barriers experienced in successful implementation.

Details

Engineering, Construction and Architectural Management, vol. 24 no. 2
Type: Research Article
ISSN: 0969-9988

Keywords

Open Access
Article
Publication date: 6 March 2024

Chuloh Jung, Muhammad Azzam Ismail, Mohammad Arar and Nahla AlQassimi

This study aims to evaluate the efficiency of various techniques for enhancing indoor air quality (IAQ) in construction. It analyzed the alterations in the concentration of indoor…

Abstract

Purpose

This study aims to evaluate the efficiency of various techniques for enhancing indoor air quality (IAQ) in construction. It analyzed the alterations in the concentration of indoor air pollutants over time for each product employed in controlling pollution sources and removing it, which included eco-friendly substances and adsorbents. The study will provide more precise and dependable data on the effectiveness of these control methods, ultimately supporting the creation of more efficient and sustainable approaches for managing indoor air pollution in buildings.

Design/methodology/approach

The research investigates the impact of eco-friendly materials and adsorbents on improving indoor air quality (IAQ) in Dubai's tall apartment buildings. Field experiments were conducted in six units of The Gate Tower, comparing the IAQ of three units built with “excellent” grade eco-friendly materials with three built with “good” grade materials. Another experiment evaluated two adsorbent products (H and Z) in the Majestic Tower over six months. Results indicate that “excellent” grade materials significantly reduced toluene emissions. Adsorbent product Z showed promising results in pollutant reduction, but there is concern about the long-term behavior of adsorbed chemicals. The study emphasizes further research on household pollutant management.

Findings

The research studied the effects of eco-friendly materials and adsorbents on indoor air quality in Dubai's new apartments. It found that apartments using “excellent” eco-friendly materials had significantly better air quality, particularly reduced toluene concentrations, compared to those using “good” materials. However, high formaldehyde (HCHO) emissions were observed from wood products. While certain construction materials led to increased ethylbenzene and xylene levels, adsorbent product Z showed promise in reducing pollutants. Yet, there is a potential concern about the long-term rerelease of these trapped chemicals. The study emphasizes the need for ongoing research in indoor pollutant management.

Research limitations/implications

The research, while extensive, faced limitations in assessing the long-term behavior of adsorbed chemicals, particularly the potential for rereleasing trapped pollutants over time. Despite the study spanning a considerable period, indoor air pollutant concentrations in target households did not stabilize, making it challenging to determine definitive improvement effects and reduction rates among products. Comparisons were primarily relative between target units, and the rapid rise in pollutants during furniture introduction warrants further examination. Consequently, while the research provides essential insights, it underscores the need for more prolonged and comprehensive evaluations to fully understand the materials' and adsorbents' impacts on indoor air quality.

Practical implications

The research underscores the importance of choosing eco-friendly materials in new apartment constructions for better IAQ. Specifically, using “excellent” graded materials can significantly reduce harmful pollutants like toluene. However, the study also highlights that certain construction activities, such as introducing furniture, can rapidly elevate pollutant levels. Moreover, while adsorbents like product Z showed promise in reducing pollutants, there is potential for adsorbed chemicals to be rereleased over time. For practical implementation, prioritizing higher-grade eco-friendly materials and further investigation into furniture emissions and long-term behavior of adsorbents can lead to healthier indoor environments in newly built apartments.

Originality/value

The research offers a unique empirical assessment of eco-friendly materials' impact on indoor air quality within Dubai's rapidly constructed apartment buildings. Through field experiments, it directly compares different material grades, providing concrete data on pollutant levels in newly built environments. Additionally, it explores the efficacy of specific adsorbents, which is of high value to the construction and public health sectors. The findings shed light on how construction choices can influence indoor air pollution, offering valuable insights to builders, policymakers and residents aiming to promote public health and safety in urban living spaces.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Open Access
Article
Publication date: 22 March 2024

Abdul Rauf, Daniel Efurosibina Attoye and Robert H. Crawford

Recently, there has been a shift toward the embodied energy assessment of buildings. However, the impact of material service life on the life-cycle embodied energy has received…

Abstract

Purpose

Recently, there has been a shift toward the embodied energy assessment of buildings. However, the impact of material service life on the life-cycle embodied energy has received little attention. We aimed to address this knowledge gap, particularly in the context of the UAE and investigated the embodied energy associated with the use of concrete and other materials commonly used in residential buildings in the hot desert climate of the UAE.

Design/methodology/approach

Using input–output based hybrid analysis, we quantified the life-cycle embodied energy of a villa in the UAE with over 50 years of building life using the average, minimum, and maximum material service life values. Mathematical calculations were performed using MS Excel, and a detailed bill of quantities with >170 building materials and components of the villa were used for investigation.

Findings

For the base case, the initial embodied energy was 57% (7390.5 GJ), whereas the recurrent embodied energy was 43% (5,690 GJ) of the life-cycle embodied energy based on average material service life values. The proportion of the recurrent embodied energy with minimum material service life values was increased to 68% of the life-cycle embodied energy, while it dropped to 15% with maximum material service life values.

Originality/value

The findings provide new data to guide building construction in the UAE and show that recurrent embodied energy contributes significantly to life-cycle energy demand. Further, the study of material service life variations provides deeper insights into future building material specifications and management considerations for building maintenance.

Details

Engineering, Construction and Architectural Management, vol. 31 no. 13
Type: Research Article
ISSN: 0969-9988

Keywords

Open Access
Article
Publication date: 10 December 2021

Elvis Attakora-Amaniampong, Miller Williams Appau and Issaka Kanton Osumanu

Previous students' housing studies have neglected the need to study all-inclusive student housing and quality of services delivery among students with disability. This study…

1128

Abstract

Purpose

Previous students' housing studies have neglected the need to study all-inclusive student housing and quality of services delivery among students with disability. This study explores the expectations in students' housing among university students living with disabilities (SWDs) in Ghana.

Design/methodology/approach

The study adopted a mixed-methods approach, involving 423 SWD selected from five public and three private universities across Ghana. Grounded on the Gap Model, the study employed exploratory factor analysis to extract factors of service quality delivery and universal building design for SWD living in off-campus students' housing.

Findings

The study uncovered that, expectations of SWD regarding building design specifications hinges more on inbuilt universal design than external building environment designs. SWD are more interested in safety, health, managerial assurances and security. In all, five factors provided a huge gap in services quality delivered by off-campus students' housing.

Practical implications

The Gap Model technique offers a framework that provides an insight for students' housing investors, managers, researchers and local authorities that provides an insight on the needs of SWD in student housing, thus making it possible to attain satisfactions amongst SWD.

Originality/value

Unlike health-related studies that deals with expectations of all-inclusive buildings for persons with disability in hospitals, this study uniquely uncovered the expectations of services delivery and building design support to SWD in the Ghanaian context.

Details

PSU Research Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2399-1747

Keywords

Open Access
Article
Publication date: 3 May 2023

Lars Stehn and Alexander Jimenez

The purpose of this paper is to understand if and how industrialized house building (IHB) could support productivity developments for housebuilding on project and industry levels…

Abstract

Purpose

The purpose of this paper is to understand if and how industrialized house building (IHB) could support productivity developments for housebuilding on project and industry levels. The take is that fragmentation of construction is one explanation for the lack of productivity growth, and that IHB could be an integrating method of overcoming horizontal and vertical fragmentation.

Design/methodology/approach

Singe-factor productivity measures are calculated based on data reported by IHB companies and compared to official produced and published research data. The survey covers the years 2013–2020 for IHB companies building multi-storey houses in timber. Generalization is sought through descriptive statistics by contrasting the data samples to the used means to control vertical and horizontal fragmentation formulated as three theoretical propositions.

Findings

According to the results, IHB in timber is on average more productive than conventional housebuilding at the company level, project level, in absolute and in growth terms over the eight-year period. On the company level, the labour productivity was on average 10% higher for IHB compared to general construction and positioned between general construction and general manufacturing. On the project level, IHB displayed an average cost productivity growth of 19% for an employed prefabrication degree of about 45%.

Originality/value

Empirical evidence is presented quantifying so far perceived advantages of IHB. By providing analysis of actual cost and project data derived from IHB companies, the article quantifies previous research that IHB is not only about prefabrication. The observed positive productivity growth in relation to the employed prefabrication degree indicates that off-site production is not a sufficient mean for reaching high productivity and productivity growth. Instead, the capabilities to integrate the operative logic of conventional housebuilding together with logic of IHB platform development and use is a probable explanation of the observed positive productivity growth.

Details

Construction Innovation , vol. 24 no. 7
Type: Research Article
ISSN: 1471-4175

Keywords

Content available
Article
Publication date: 1 April 2014

Dan Engstrom and Lars Stehn

466

Abstract

Details

Construction Innovation, vol. 14 no. 2
Type: Research Article
ISSN: 1471-4175

Open Access
Article
Publication date: 14 November 2022

Johnson Adetooto, Abimbola Windapo and Francesco Pomponi

This study aims to evaluate the perception of the local experts and end users on the drivers, barriers and strategies to the use of alternative building technologies (ABTs), with…

2692

Abstract

Purpose

This study aims to evaluate the perception of the local experts and end users on the drivers, barriers and strategies to the use of alternative building technologies (ABTs), with a focus on sandbag building technologies (SBTs) in the provision of sustainable housing in South Africa towards improving the public's understanding of SBTs.

Design/methodology/approach

This research adopted a qualitative approach that used focus group meetings as the primary data collection method for this study. This study's focus group participants comprised ABT experts and end users of ABT houses in South Africa who were selected using a convenient sampling technique. The data were recorded, transcribed verbatim and analysed using NVivo 11 software.

Findings

This study found that the perceived drivers to using ABTs such as SBT comprise sustainability, affordability, job creation potentials, fire-resistant and earthquake resistance. This study revealed strategies for the SBTs, including awareness, building sandbag prototypes across cities and training.

Practical implications

This study's findings have practical implications for the practice and praxis of ABT implementation and uptake in South Africa. This study provides a framework for broadening the worldwide understanding of use and uptake of SBTs to provide sustainable and affordable housing.

Originality/value

This study adds significantly to the limited body of knowledge on ABTs, focusing on sandbag houses. Consequently, the findings provide policymakers with information on the expert and end-user perspectives on the barriers and strategies to using ABTs.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Open Access
Article
Publication date: 23 January 2024

Luís Jacques de Sousa, João Poças Martins, Luís Sanhudo and João Santos Baptista

This study aims to review recent advances towards the implementation of ANN and NLP applications during the budgeting phase of the construction process. During this phase…

Abstract

Purpose

This study aims to review recent advances towards the implementation of ANN and NLP applications during the budgeting phase of the construction process. During this phase, construction companies must assess the scope of each task and map the client’s expectations to an internal database of tasks, resources and costs. Quantity surveyors carry out this assessment manually with little to no computer aid, within very austere time constraints, even though these results determine the company’s bid quality and are contractually binding.

Design/methodology/approach

This paper seeks to compile applications of machine learning (ML) and natural language processing in the architectural engineering and construction sector to find which methodologies can assist this assessment. The paper carries out a systematic literature review, following the preferred reporting items for systematic reviews and meta-analyses guidelines, to survey the main scientific contributions within the topic of text classification (TC) for budgeting in construction.

Findings

This work concludes that it is necessary to develop data sets that represent the variety of tasks in construction, achieve higher accuracy algorithms, widen the scope of their application and reduce the need for expert validation of the results. Although full automation is not within reach in the short term, TC algorithms can provide helpful support tools.

Originality/value

Given the increasing interest in ML for construction and recent developments, the findings disclosed in this paper contribute to the body of knowledge, provide a more automated perspective on budgeting in construction and break ground for further implementation of text-based ML in budgeting for construction.

Details

Construction Innovation , vol. 24 no. 7
Type: Research Article
ISSN: 1471-4175

Keywords

Content available
Article
Publication date: 5 April 2011

Stephen Todd

183

Abstract

Details

Structural Survey, vol. 29 no. 1
Type: Research Article
ISSN: 0263-080X

Content available
Article
Publication date: 17 February 2012

Rita Ormsby

238

Abstract

1 – 10 of over 2000