Search results

1 – 10 of 499
Article
Publication date: 23 January 2023

Bruno Falcón Silveira and Dayana Bastos Costa

Several studies have addressed the use of four-dimensional (4D) building information modeling (BIM) for construction management. However, the automation of the processes for…

Abstract

Purpose

Several studies have addressed the use of four-dimensional (4D) building information modeling (BIM) for construction management. However, the automation of the processes for generating 4D models and their integrated use with Location-Based Planning and the Last Planner® System is not well discussed. Therefore, this paper aims to develop a method for automating the generation and use of 4D BIM models integrated with Location-Based Planning and Last Planner® System supporting project control cycles.

Design/methodology/approach

The research strategy adopted was Design Science Research. The automated method for using the 4D models was developed and refined in two residential building projects in Brazil, along with 31 meetings and involving 11 direct users. The assessment of the proposed method focuses on four constructs: the impact of process automation, the impact on the identification and assessment of site progress and the planning process, ease of adoption and utility of the proposed method.

Findings

The results of this paper indicated increased adherence between planned and executed through an automated method for using the 4D models. The established routines enabled automating the link between the planning levels and the three-dimensional (3D) model, providing a more agile and updated data source and achieving 92.8% of user satisfaction regarding the deadline and frequency of delivery of the 4D model reports. Moreover, this study identified the relationships between the processes of the method proposed and Digital Models.

Originality/value

The primary scientific value achieved in this study is creating a method for automating processes and simplifying steps for the generation and use of 4D BIM models in the production planning and control cycles during the construction phase.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 23 August 2022

Mohammad Nafe Assafi, Md. Mehrab Hossain, Nicholas Chileshe and Shuvo Dip Datta

As a developing nation, Bangladesh still has scarce technological applications in the construction sector, which results in construction delays. This paper aims to propose a…

Abstract

Purpose

As a developing nation, Bangladesh still has scarce technological applications in the construction sector, which results in construction delays. This paper aims to propose a framework that will diminish manual labor, reduce human error and apply four-dimensional (4D) building information modeling (BIM)-based solutions to mitigate and prevent construction project delays.

Design/methodology/approach

First, a systematic literature review was conducted on analyzing the construction delay scenario in the context of Bangladesh and other countries. Next, a 4D BIM-based framework was developed using Autodesk Navisworks Manage. Finally, it was used to run on-site simulations on an ongoing construction project which faced delays because of design errors and inefficient planning.

Findings

Affirmative results were found from applying these methods through real-time project simulation. The current status of the project and the status after using BIM technology were compared. It was observed that during both the preconstruction and execution phases, the application of 4D BIM could reduce the delay posed by design error and inefficient planning.

Practical implications

The project manager and the design engineers can use these frameworks to review their projects. For the design engineers, the preconstruction phase portion of the framework will help identify the probable errors in the design. For the project managers, keeping track of time using the execution phase portion of the framework will be resourceful.

Originality/value

To the best of the authors’ knowledge, this study is the first to assess the significant delay factors endemic in Bangladesh and develop a BIM-based technological solution. This study is solely dedicated to reforming the construction techniques in Bangladesh through the application of 4D BIM technology.

Details

Construction Innovation , vol. 23 no. 5
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 19 October 2020

Aneetha Vilventhan, Sanu Razin and R. Rajadurai

The relocation of existing underground utilities in urban environments is complex because of the existence of multiple utility agencies being responsible for numerous utilities…

Abstract

Purpose

The relocation of existing underground utilities in urban environments is complex because of the existence of multiple utility agencies being responsible for numerous utilities and over constrained space and time to execute maintenance works. Unfamiliar location and insufficient records of maintenance data hamper the flow of work, causing unnecessary delays and conflicts. The aim of the paper is to explore 4 dimensional Building Information Modeling as a smart solution for the management of multiple utility data for a relocation project in an urban setting.

Design/methodology/approach

An empirical case-based research methodology is used to collect data and develop the BIM models. Two ongoing construction projects in an urban city are empirically studied, and 4D BIM models of identified utilities are developed to assist management and relocation of existing utilities.

Findings

The developed BIM models enabled the location of existing sub-surface utilities through 3D visualization and also enabled clash detection. The 4D simulation of BIM model enabled the tracking of actual progress of relocation works and thereby helped in taking necessary actions to minimize forthcoming delays. The evaluation of the developed model showed that the application of 4D BIM improved communication and coordination during utility relocation works.

Practical implications

4D BIM for utility infrastructure provides better management of utility information. They provide utility stakeholders an efficient way to coordinate, manage utility relocation processes through improved visualization and communication with a reduction in delays and conflicts.

Originality/value

Limited efforts were made using 3D BIM for sub-surface utility infrastructure in visualization and management of utility information. Efforts using 4D BIM in coordination and management of utility projects are left unexplored. This study adds value to the current literature through the application of 4D BIM for utility relocation projects.

Article
Publication date: 4 October 2022

Ali Rashidi, Wei Yin Yong, Duncan Maxwell and Yihai Fang

The construction industry has actively attempted to tackle the low-productivity issues arising from inefficient construction planning. It is imperative to understand how…

Abstract

Purpose

The construction industry has actively attempted to tackle the low-productivity issues arising from inefficient construction planning. It is imperative to understand how construction practitioners perceive technology integration in construction planning in light of emerging technologies. This study intended to uncover unique experimental findings by integrating 4D-building information modelling (BIM) to virtual reality (VR) technology during construction planning among construction professionals at light steel framing (LSF) projects.

Design/methodology/approach

The building industry participants were invited to provide inputs on two different construction planning methods: conventional and innovative methods. The conventional method involved the participants using traditional platforms such as 2D computer-aided design (CAD) and physical visualisation of paper-based construction drawings for the LSF assembly process with a Gantt Chart tool to complete construction planning-related tasks for the targeted project. Comparatively, participants are required to perform the same tasks using more innovative platforms like 4D-BIM in a VR environment.

Findings

A Charrette Test Method was used to validate the findings, highlighting an improvement in usability (+10.3%), accuracy (+89.1%) and speed (+30%) using 4D BIM with VR compared to the conventional paper-based method. The findings are also validated by a paired t-test, which is supported by the rationality of the same findings. This study posits positive results for construction planning through the utilisation of modern practices and technologies. These findings are significant for the global construction industry facing low productivity issues, delays and certainty in terms of building delivery timelines due to poor construction planning.

Originality/value

This new blend of technologies—combining 4D BIM and VR in industrialised construction projects—potentially directs future initiatives to drive the efficiency of construction planning in the building lifecycle. The interactive BIM-based virtual environment would purposefully transform construction planning practices in order to deliver modern and more certain building construction methods with a focus on prefabrication processes.

Open Access
Article
Publication date: 30 April 2021

Sepehr Alizadehsalehi and Ibrahim Yitmen

The purpose of this research is to develop a generic framework of a digital twin (DT)-based automated construction progress monitoring through reality capture to extended reality…

8976

Abstract

Purpose

The purpose of this research is to develop a generic framework of a digital twin (DT)-based automated construction progress monitoring through reality capture to extended reality (RC-to-XR).

Design/methodology/approach

IDEF0 data modeling method has been designed to establish an integration of reality capturing technologies by using BIM, DTs and XR for automated construction progress monitoring. Structural equation modeling (SEM) method has been used to test the proposed hypotheses and develop the skill model to examine the reliability, validity and contribution of the framework to understand the DRX model's effectiveness if implemented in real practice.

Findings

The research findings validate the positive impact and importance of utilizing technology integration in a logical framework such as DRX, which provides trustable, real-time, transparent and digital construction progress monitoring.

Practical implications

DRX system captures accurate, real-time and comprehensive data at construction stage, analyses data and information precisely and quickly, visualizes information and reports in a real scale environment, facilitates information flows and communication, learns from itself, historical data and accessible online data to predict future actions, provides semantic and digitalize construction information with analytical capabilities and optimizes decision-making process.

Originality/value

The research presents a framework of an automated construction progress monitoring system that integrates BIM, various reality capturing technologies, DT and XR technologies (VR, AR and MR), arraying the steps on how these technologies work collaboratively to create, capture, generate, analyze, manage and visualize construction progress data, information and reports.

Details

Smart and Sustainable Built Environment, vol. 12 no. 1
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 3 March 2020

Faris Elghaish and Sepehr Abrishami

The integration of building information modelling (BIM) and integrated project delivery (IPD) is highly recommended for better project delivery. Although there is a methodology…

1398

Abstract

Purpose

The integration of building information modelling (BIM) and integrated project delivery (IPD) is highly recommended for better project delivery. Although there is a methodology for this integration, the BIM requires some improvements to foster the adoption of IPD. The purpose of this paper is to present an innovative way to support 4D BIM automation/optimisation within the IPD approach. Similar to structural and architectural design libraries, this research proposes a planning library to enable automating the formulation of schedule, as well as embedding the multi-objective optimisation into the 4D BIM.

Design/methodology/approach

The literature review was used to highlight the existing attempts to support the automation process for 4D BIM and the multi-objective schedule optimisation for construction projects. A case study was done to validate the developed framework and measure its applicability.

Findings

The results show that there is a cost-saving of 22.86 per cent because of using the proposed automated multi-objective optimisation. The case study shows the significance of integrating activity-based costing into 4D BIM to configure the hierarchy level of overhead activities with the IPD approach; therefore, the maximum level of contribution in managing the IPD project is 33.33 per cent by the trade package level and the minimum contribution is around 8.33 per cent by the project level.

Originality/value

This research presents a new philosophy to develop the 4D BIM model – planning and scheduling – a BIM library of the project activities is developed to enable the automation of the creation of the project schedule with respect to the 3D BIM design sequence. The optimisation of the project duration is considered to be automated within the creation process by using the proposed genetic algorithm model.

Article
Publication date: 6 January 2021

Cristina Toca Pérez and Dayana Bastos Costa

This paper proposes to apply the lean philosophy principle of minimizing or eliminating non-value adding activities combined with 4D building information modeling (BIM

Abstract

Purpose

This paper proposes to apply the lean philosophy principle of minimizing or eliminating non-value adding activities combined with 4D building information modeling (BIM) simulations to reduce transportation waste in construction production processes.

Design/methodology/approach

This study adopts design science research (DSR) because of its prescriptive character to produce innovative constructions (artifacts) to solve real-world problems. The artifact proposed is a set of constructs for evaluating the utility of 4D BIM simulations for transportation waste reduction. The authors performed two learning cycles using empirical studies in projects A, B and C. The construction process of cast-in-place (CIP) reinforcement concrete (RC) was selected to demonstrate and evaluate 4D BIM's utility. The empirical studies focused on understanding the current transportation waste, collecting actual performance data during job site visits and demonstrating the usage of 4D BIM.

Findings

In the first cycle, 4D BIM successfully allowed users to understand the CIP-RC process's transportation activities, which were modeled. In the second cycle, 4D BIM enabled better decision-making processes concerning the definitions of strategies for placing reusable formworks for CIP concrete walls by planning transportation activities.

Practical implications

In Cycle 2, three different scenarios were simulated to identify the most suitable formwork assembly planning, and the results were compared to the real situations identified during the job site visits. The scenario chosen demonstrated that the 4D BIM simulation yielded an 18.75% cycle time reduction. In addition, the simulation contributed to a decrease in transportation waste that was previously identified.

Originality/value

The original contribution of this paper is the use of 4D BIM simulation for managing non-value adding activities to reduce transportation waste. The utility of 4D BIM for the reduction of those conflicts considered three constructs: (1) the capacity to improve transportation activity efficiency, (2) the capacity to improve construction production efficiency and (3) the capacity to reduce transportation waste consequences.

Details

Engineering, Construction and Architectural Management, vol. 28 no. 8
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 20 December 2022

Abdulwahed Fazeli, Saeed Banihashemi, Aso Hajirasouli and Saeed Reza Mohandes

This research aims to develop an automated and optimization algorithms (OAs)-integrated 4D building information modeling (BIM) approach and a prototype and enable construction…

Abstract

Purpose

This research aims to develop an automated and optimization algorithms (OAs)-integrated 4D building information modeling (BIM) approach and a prototype and enable construction managers and practitioners to estimate the time of compound elements in building projects using the resource specification technique.

Design/methodology/approach

A 4D BIM estimation process was first developed by applying the resource specification and geometric information from the BIM model. A suite of OA including particle swarm optimization, ant colony, differential evolution and genetic algorithm were developed and compared in order to facilitate and automate the estimation process. The developed processes and porotypes were linked and integrated.

Findings

The OA-based automated 4D BIM estimation prototype was developed and validated through a real-life construction project. Different OAs were applied and compared, and the genetic algorithm was found as the best performing one. The prototype was successfully linked with BIM timeliner application. By using this approach, the start and finish dates of all object-based activities are developed, and the project completion time is automatically estimated.

Originality/value

Unlike conventional construction estimation methods which need various tools and are error prone and time-consuming, the developed method bypasses the existing time estimation tools and provides the integrated and automated process with BIM and machine learning algorithms. Furthermore, this approach integrates 4D BIM applications into construction design procedures, connected with OA automation.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Book part
Publication date: 29 March 2021

Benjamin Gbolahan Ekemode and Daramola Thompson Olapade

The purpose of this chapter is to investigate the adoption and use of building information modelling (BIM) for residential real estate development in Nigeria (using Lagos as a…

Abstract

The purpose of this chapter is to investigate the adoption and use of building information modelling (BIM) for residential real estate development in Nigeria (using Lagos as a case study), with a view to providing information towards improving BIM uptake, which could enhance sustainable housing delivery in the country. A quantitative research methodology was adopted involving the use of questionnaire survey to collect primary data. The data were obtained from private real estate developers in Lagos State. The self-administered questionnaire was distributed to all the 72 active real estate developers in the study area, and the response rate was 62.5%. The collected data were analysed using statistical tools such as frequency and percentages, mean rating and chi-square. The results revealed a low level of awareness and usage of the transformative and contemporary BIM technology (6D BIM version) by real estate developers. It was established that the 2D and 3D BIM traditional versions were the most utilised across the phases of real estate development process. It was also found that the level of BIM utilisation has a significant relationship with the age and asset base of the real estate developers. The chapter concludes by advocating increase in the asset base and organisational profile of real estate developers to enhance BIM adoption, especially, the 6D BIM, which could facilitate sustainable real estate development.

Details

Sustainable Real Estate in the Developing World
Type: Book
ISBN: 978-1-83867-838-8

Keywords

Article
Publication date: 10 September 2021

Barry Gledson

The purpose of this study is to establish an enhanced model of the innovation-decision process (IDP), specifically for construction. As context, innovation diffusion theory (IDT…

Abstract

Purpose

The purpose of this study is to establish an enhanced model of the innovation-decision process (IDP), specifically for construction. As context, innovation diffusion theory (IDT) is concerned with explaining how some innovations successfully stick whilst others fail to propagate. Because theoretical models provide abstracted representations of systems/phenomena, established IDT models can help decision-making units with innovation-related sense-marking and problem-solving. However, these occasionally fail or require enhancement to represent phenomena more successfully. This is apparent whenever middle-range theory seems ill-fitted to the complexity of construction.

Design/methodology/approach

Qualitative research via 13 semi-structured interviews occurred, with participants recruited via convenience and purposive sampling strategies. The study forms part of a broader mixed-method study (n = 246) informed by a research philosophy of pragmatism, investigating the applicability of classic IDT to the adoption of four-dimensional (4D) building information modelling (4D BIM) by the UK construction sector.

Findings

This diffusion study resulted in the adaptation of an existing IDP model, ensuring a better contextual fit. Classified more specifically as a modular-technological-process innovation, 4D BIM with its potential to provide construction planning improvements is used as a vehicle to show why, for construction, an existing model required theoretical extensions involving additional stages, decision-action points and outcomes.

Research limitations/implications

This model can assist construction industry actors with future adoption/rejection decisions around modular-technological-process innovations. It also aids the understanding of scholars and researchers, through its various enhancements and by reinforcing the importance of existing diffusion concepts of compatibility and trialability, for these innovation types.

Originality/value

An enhanced model of the IDP, specifically for construction, is established. This construction-centric contribution to IDT will be of interest to construction scholars and to practitioners.

Details

Construction Innovation, vol. 22 no. 4
Type: Research Article
ISSN: 1471-4175

Keywords

1 – 10 of 499