Search results

1 – 3 of 3
Article
Publication date: 18 September 2019

Aitor Erkoreka, Ivan Flores-Abascal, Cesar Escudero, Koldo Martin, Jose Antonio Millan and Jose Maria Sala

Understanding the dynamic hygrothermal behavior of building elements is very important to ensure the optimal performance of buildings. The Laboratory for Quality Control in…

Abstract

Purpose

Understanding the dynamic hygrothermal behavior of building elements is very important to ensure the optimal performance of buildings. The Laboratory for Quality Control in Buildings of the Basque Government tested a flat roof designed by a construction company that developed a building to be constructed using prefabricated modules. This is a five to eight floor building with ventilated façade and a flat roof covered by gravel with the possibility of changing it to a green cover. The paper aims to discuss this issue.

Design/methodology/approach

The interest of this research was threefold. The first objective was to accurately test, under real dynamic weather conditions, the roof design in a PASLINK test cell to obtain the U-value and the thermal capacitance of the different roof layers, and of the roof as a whole, through the precise calibration of resistance-capacitance mathematical models of the roof. Based on the parameters and experimental information of these calibrated models, a second goal was to calibrate and validate a Wufi model of the roof.

Findings

This second calibrated model was then used to simulate the dynamic hygrothermal behavior of the roof, obtaining the roof’s hourly thermal demand per square meter for a whole year in different locations considered in the Spanish Building Code. These simulations also permitted the authors to study the risk of condensation and mold growth of the tested component under different climatic conditions.

Originality/value

The successful combination of the PASLINK method to calibrate the Wufi hygrothermal model is the main novelty of this research.

Details

International Journal of Building Pathology and Adaptation, vol. 38 no. 1
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 5 April 2021

Agnieszka Kwiek, Cezary Galinski, Krzysztof Bogdański, Jaroslaw Hajduk and Andrzej Tarnowski

According to the study of the space flight market, there is a demand for space suborbital flights including commercial tourist flights. However, one of the challenges is to design…

Abstract

Purpose

According to the study of the space flight market, there is a demand for space suborbital flights including commercial tourist flights. However, one of the challenges is to design a mission and a vehicle that could offer flights with relatively low G-loads. The project of the rocket-plane in a strake-wing configuration was undertaken to check if such a design could meet the FAA recommendation for this kind of flight. The project concept assumes that the rocket plane is released from a slowly flying carrier plane, then climbs above 100 kilometers above sea level and returns in a glide flight using a vortex lift generated by the strake-wing configuration. Such a mission has to include a flight transition during the release and return phases which might not be comfortable for passengers. Verification if FAA recommendation is fulfilled during these transition maneuvers was the purpose of this study.

Design/methodology/approach

The project was focused on the numerical investigation of a possibility to perform transition maneuvers mentioned above in a passenger-friendly way. The numerical simulations of a full-scale rocket-plane were performed using the simulation and dynamic stability analyzer (SDSA) software package. The influence of an elevator deflection change on flight parameters was investigated in two cases: a transition from the steep descent at high angles of attack to the level glide just after rocket-plane release from the carrier and an analogous transition after re-entry to the atmosphere. In particular, G-loads and G-rates were analyzed.

Findings

As a result, it was found that the values of these parameters satisfied the specific requirements during the separation and transition from a steep descent to gliding. They would be acceptable for an average passenger.

Research limitations/implications

To verify the modeling approach, a flight test campaign was performed. During the experiment, a rocket-plane scaled model was released from the RC model helicopter. The rocket-plane model was geometrically similar only. Froude scales were not applied because they would cause excessive technical complications. Therefore, a separate simulation of the experiment with the application of the scaled model was performed in the SDSA software package. Results of this simulation appeared to be comparable to flight test results so it can be concluded that results for the full-scale rocket-plane simulation are also realistic.

Practical implications

It was proven that the rocket-plane in a strake-wing configuration could meet the FAA recommendation concerning G-loads and G rates during suborbital flight. Moreover, it was proven that the SDSA software package could be applied successfully to simulate flight characteristics of airplanes flying at angles of attack not only lower than stall angles but also greater than stall angles.

Social implications

The application of rocket-planes in a strake-wing configuration could make suborbital tourist flights more popular, thus facilitating the development of manned space flights and contributing to their cost reduction. That is why it was so important to prove that they could meet the FAA recommendation for this kind of service.

Originality/value

The original design of the rocket plane was analyzed. It is equipped with an optimized strake wing and is controlled with oblique, all moving, wingtip plates. Its post-stall flight characteristics were simulated with the application of the SDSA software package which was previously validated only for angles of attack smaller than stall angle. Therefore, experimental validation was necessary. However, because of excessive technical problems caused by the application of Froude scales it was not possible to perform a conventional test with a dynamically scaled model. Therefore, the geometrically scaled model was built and flight tested. Then a separate simulation of the experiment with the application of this model was performed. Results of this separate simulation were compared with the results of the flight test. This comparison allowed to draw the conclusion on the applicability of the SDSA software for post-stall analyzes and, indirectly, on the applicability of the proposed rocket-plane for tourist suborbital flights. This approach to the experimental verification of numerical simulations is quite unique. Finally, a quite original method of the model launching during flight test experiment was applied.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 9
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 21 March 2022

Jason Martinez and Ann Jeffers

A methodology for producing an elevated-temperature tension stiffening model is presented.

Abstract

Purpose

A methodology for producing an elevated-temperature tension stiffening model is presented.

Design/methodology/approach

The energy-based stress–strain model of plain concrete developed by Bažant and Oh (1983) was extended to the elevated-temperature domain by developing an analytical formulation for the temperature-dependence of the fracture energy Gf. Then, an elevated-temperature tension stiffening model was developed based on the modification of the proposed elevated-temperature tension softening model.

Findings

The proposed tension stiffening model can be used to predict the response of composite floor slabs exposed to fire with great accuracy, provided that the global parameters TS and Kres are adequately calibrated against global structural response data.

Originality/value

In a finite element analysis of reinforced concrete, a tension stiffening model is required as input for concrete to account for actions such as bond slip and tension stiffening. However, an elevated-temperature tension stiffening model does not exist in the research literature. An approach for developing an elevated-temperature tension stiffening model is presented.

1 – 3 of 3