Search results

1 – 10 of 486
Article
Publication date: 29 March 2024

Sihao Li, Jiali Wang and Zhao Xu

The compliance checking of Building Information Modeling (BIM) models is crucial throughout the lifecycle of construction. The increasing amount and complexity of information…

Abstract

Purpose

The compliance checking of Building Information Modeling (BIM) models is crucial throughout the lifecycle of construction. The increasing amount and complexity of information carried by BIM models have made compliance checking more challenging, and manual methods are prone to errors. Therefore, this study aims to propose an integrative conceptual framework for automated compliance checking of BIM models, allowing for the identification of errors within BIM models.

Design/methodology/approach

This study first analyzed the typical building standards in the field of architecture and fire protection, and then the ontology of these elements is developed. Based on this, a building standard corpus is built, and deep learning models are trained to automatically label the building standard texts. The Neo4j is utilized for knowledge graph construction and storage, and a data extraction method based on the Dynamo is designed to obtain checking data files. After that, a matching algorithm is devised to express the logical rules of knowledge graph triples, resulting in automated compliance checking for BIM models.

Findings

Case validation results showed that this theoretical framework can achieve the automatic construction of domain knowledge graphs and automatic checking of BIM model compliance. Compared with traditional methods, this method has a higher degree of automation and portability.

Originality/value

This study introduces knowledge graphs and natural language processing technology into the field of BIM model checking and completes the automated process of constructing domain knowledge graphs and checking BIM model data. The validation of its functionality and usability through two case studies on a self-developed BIM checking platform.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 13 May 2022

Mustafa Onur Savaşkan and Ozan Önder Özener

This article presents a case study on the Heritage Building Information Modeling (H-BIM) application in a historic village in Bursa, Turkey. The study addresses how tailor-made…

Abstract

Purpose

This article presents a case study on the Heritage Building Information Modeling (H-BIM) application in a historic village in Bursa, Turkey. The study addresses how tailor-made and highly structured H-BIM approaches can effectively be implemented in preservation applications for historic vernacular buildings in the rural architecture context.

Design/methodology/approach

Using inexpensive digital photogrammetry techniques tightly combined with an object-oriented BIM ontology, parametric meta-modeling and object/system propagation methods, the study employed a holistic H-BIM approach for capturing the materiality, building object behaviors and indigenous construction principles of a characteristic vernacular house that were synthesized in a parametric H-BIM model. The followed stages, steps and connected methods were systematized and articulated in a prototypical H-BIM implementation framework.

Findings

The study findings suggested that the developed parametric H-BIM approach can return effective results with the combined use of low-cost and practical digital photogrammetry with BIM methods. The flexibility and adaptability of the parametric H-BIM implementation framework facilitated the synthesis of a comprehensive H-BIM model and allowed an in-depth evaluation of local architectural heritage with its physical, spatial and environmental characteristics. The proposed H-BIM approach also provided significant documentation and system-specific assessment benefits for preserving the vernacular examples which are prone to extinction especially due to structural and systemic deterioration.

Originality/value

The study proposes a feasible, practical and replicable H-BIM implementation methodology for vernacular preservation applications. The knowledge-embedded H-BIM approach, flows and techniques presented in this study provide a holistic and systematic H-BIM framework – with the integrated use of digital photogrammetry and parametric meta-modeling methods – that has the potential for the democratization of H-BIM applications in education and practice.

Details

Engineering, Construction and Architectural Management, vol. 30 no. 9
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 31 October 2023

Chukwuka Christian Ohueri, San Chuin Liew, Jibril Adewale Bamgbade and Wallace Imoudu Enegbuma

The efficient application of building information modeling (BIM) methodology in the sustainable building design process, known as green BIM, provides ideal leverage to…

Abstract

Purpose

The efficient application of building information modeling (BIM) methodology in the sustainable building design process, known as green BIM, provides ideal leverage to significantly enhance multidiscipline team collaboration. However, the practical execution of green BIM is characterized by issues such as duplication of work, information silos and poor cross-party coordination. Besides, there are limited studies on the specific components that are critical to driving green BIM collaborative design. This study aims to establish the critical components of green BIM collaborative design to enable the multidiscipline team to effectively use diverse software to collaboratively exchange accurate information, thus ensuring informed decision-making in the sustainable building design process.

Design/methodology/approach

Data were obtained by using a questionnaire to survey 360 respondents comprising mainly architects and engineers (civil, mechanical and electrical) in Malaysia. Subsequently, data were analyzed via confirmatory factor analysis. Afterward, a measurement model was established and used to test the 11 hypotheses of this study.

Findings

A covariance-based structural equation model of the critical components for successful BIM-based sustainable building design collaboration was established.

Practical implications

The research findings will guide the multidisciplinary team to collaboratively exchange accurate information in green BIM practices.

Originality/value

To the best of the authors’ knowledge, this research is the first attempt in the literature to provide a pragmatic approach for practitioners to combine the established critical components of green BIM to collaboratively exchange heterogeneous sustainability criteria and efficiently design buildings with high sustainability performance, particularly in emerging countries like Malaysia.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 19 January 2024

Kenneth Lawani, Farhad Sadeghineko, Michael Tong and Mehmethan Bayraktar

The purpose of this study is to explore the suggestions that construction processes could be considerably improved by integrating building information modelling (BIM) with 3D…

57

Abstract

Purpose

The purpose of this study is to explore the suggestions that construction processes could be considerably improved by integrating building information modelling (BIM) with 3D laser scanning technologies. This case study integrated 3D laser point cloud scans with BIM to explore the effects of BIM adoption on ongoing construction project, whilst evaluating the utility of 3D laser scanning technology for producing structural 3D models by converting point cloud data (PCD) into BIM.

Design/methodology/approach

The primary data acquisition adopted the use of Trimble X7 laser scanning process, which is a set of data points in the scanned space that represent the scanned structure. The implementation of BIM with the 3D PCD to explore the precision and effectiveness of the construction processes as well as the as-built condition of a structure was precisely captured using the 3D laser scanning technology to recreate accurate and exact 3D models capable of being used to find and fix problems during construction.

Findings

The findings indicate that the integration of BIM and 3D laser scanning technology has the tendency to mitigate issues such as building rework, improved project completion times, reduced project cost, enhanced interdisciplinary communication, cooperation and collaboration amongst the project duty holders, which ultimately enhances the overall efficiency of the construction project.

Research limitations/implications

The acquisition of data using 3D laser scanner is usually conducted from the ground. Therefore, certain aspects of the building could potentially disturb data acquisition; for example, the gable and sections of eaves (fascia and soffit) could be left in a blind spot. Data acquisition using 3D laser scanner technology takes time, and the processing of the vast amount of data acquired is laborious, and if not carefully analysed, could result in errors in generated models. Furthermore, because this was an ongoing construction project, material stockpiling and planned construction works obstructed and delayed the seamless capture of scanned data points.

Originality/value

These findings highlight the significance of integrating BIM and 3D laser scanning technology in the construction process and emphasise the value of advanced data collection methods for effectively managing construction projects and streamlined workflows.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 7 December 2022

Peyman Jafary, Davood Shojaei, Abbas Rajabifard and Tuan Ngo

Building information modeling (BIM) is a striking development in the architecture, engineering and construction (AEC) industry, which provides in-depth information on different…

Abstract

Purpose

Building information modeling (BIM) is a striking development in the architecture, engineering and construction (AEC) industry, which provides in-depth information on different stages of the building lifecycle. Real estate valuation, as a fully interconnected field with the AEC industry, can benefit from 3D technical achievements in BIM technologies. Some studies have attempted to use BIM for real estate valuation procedures. However, there is still a limited understanding of appropriate mechanisms to utilize BIM for valuation purposes and the consequent impact that BIM can have on decreasing the existing uncertainties in the valuation methods. Therefore, the paper aims to analyze the literature on BIM for real estate valuation practices.

Design/methodology/approach

This paper presents a systematic review to analyze existing utilizations of BIM for real estate valuation practices, discovers the challenges, limitations and gaps of the current applications and presents potential domains for future investigations. Research was conducted on the Web of Science, Scopus and Google Scholar databases to find relevant references that could contribute to the study. A total of 52 publications including journal papers, conference papers and proceedings, book chapters and PhD and master's theses were identified and thoroughly reviewed. There was no limitation on the starting date of research, but the end date was May 2022.

Findings

Four domains of application have been identified: (1) developing machine learning-based valuation models using the variables that could directly be captured through BIM and industry foundation classes (IFC) data instances of building objects and their attributes; (2) evaluating the capacity of 3D factors extractable from BIM and 3D GIS in increasing the accuracy of existing valuation models; (3) employing BIM for accurate estimation of components of cost approach-based valuation practices; and (4) extraction of useful visual features for real estate valuation from BIM representations instead of 2D images through deep learning and computer vision.

Originality/value

This paper contributes to research efforts on utilization of 3D modeling in real estate valuation practices. In this regard, this paper presents a broad overview of the current applications of BIM for valuation procedures and provides potential ways forward for future investigations.

Details

Engineering, Construction and Architectural Management, vol. 31 no. 4
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 28 September 2022

Angeliki Kylili, Phoebe-Zoe Georgali, Petros Christou and Paris Fokaides

The built environment is taking enormous leaps towards its digitalization. Computer-aided tools such as building information modeling (BIM) are found in the forefront of this…

430

Abstract

Purpose

The built environment is taking enormous leaps towards its digitalization. Computer-aided tools such as building information modeling (BIM) are found in the forefront of this evolution, playing a critical role in creating the foundations for the upcoming development of smart low-carbon cities. However, the potential of BIM is still untapped – links will need to be created among the available and forthcoming methodologies under one integral operational system. The purpose of this paper is to present an integrated BIM-based life cycle-oriented framework for achieving sustainable constructions at the pre-construction phase. The developed framework represents an example of the approaches that the construction industry will need to adopt to integrate the different tools under an integrated smart city context.

Design/methodology/approach

The methodological approach follows the development of four same-volume different-configuration three-dimensional BIM designs, which are coupled with life cycle assessment (LCA) tools for establishing sustainable building design.

Findings

The results of this paper indicated that the choice of building design and shape can play a significant role in reducing the embodied energy and embodied carbon of buildings, achieving a reduction of up to 15% compared to a reference building of same volume and gross floor area.

Originality/value

The originality of this paper is found in its approach application by coupling three-dimensional BIM models with LCA data, the use of reinforcement detailing in an nD BIM study and the employment of country-specific LCA databases.

Details

Construction Innovation , vol. 24 no. 2
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 14 September 2023

Jiyang Yu, Hua Zhong and Marzia Bolpagni

The purpose of this paper is to analyse the current state of research on the integration of blockchain and building information modelling (BIM) in the Architecture, Engineering…

Abstract

Purpose

The purpose of this paper is to analyse the current state of research on the integration of blockchain and building information modelling (BIM) in the Architecture, Engineering, Construction and Operations (AECO) industry as a means of identifying gaps between the existing paradigm and practical applications for determining future research directions and improving the industry. The study aims to provide clear guidance on areas that need attention for further research and funding and to draw academic attention to factors beyond the technical dimension.

Design/methodology/approach

A mixed-method systematic review is used, considering multiple literature types and using a sociotechnical perspective-based framework that covers three dimensions (technic, process and context) and three research elements (why, what and how). Data are retrieved and analysed from the Web of Science and Scopus databases for the 2017–2023 period.

Findings

While blockchain has the potential to address security, traceability and transparency and complement the system by integrating supporting applications, significant gaps still exist between these potentials and widespread industry adoption. Current limitations and further research needs are identified, including designing fully integrated prototypes, empirical research to identify operational processes, testing and analysing operational-level models or applications and developing and applying a technology acceptance model for the integration paradigm. Previous research lacks contextual settings, real-world tests or empirical investigations and is primarily conceptual.

Originality/value

This paper provides a comprehensive, critical systematic review of the integration of blockchain with BIM in the construction industry, using a sociotechnical perspective-based framework which can be applied in future reviews. The study provides insight into the current state and future opportunities for policymakers and practitioners in the AECO industry to prepare for the transition in this disruptive paradigm. It also provides a phased plan along with a clear direction for the transition to more advanced applications.

Details

Construction Innovation , vol. 24 no. 1
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 4 March 2024

Hemanth Kumar N. and S.P. Sreenivas Padala

The construction industry is tasked with creating sustainable, efficient and cost-effective buildings. This study aims to develop a building information modeling (BIM)-based…

Abstract

Purpose

The construction industry is tasked with creating sustainable, efficient and cost-effective buildings. This study aims to develop a building information modeling (BIM)-based multiobjective optimization (MOO) model integrating the nondominated sorting genetic algorithm III (NSGA-III) to enhance sustainability. The goal is to reduce embodied energy and cost in the design process.

Design/methodology/approach

Through a case study research method, this study uses BIM, NSGA-III and real-world data in five phases: literature review, identification of factors, BIM model development, MOO model creation and validation in the architecture, engineering and construction sectors.

Findings

The innovative BIM-based MOO model optimizes embodied energy and cost to achieve sustainable construction. A commercial building case study validation showed a reduction of 30% in embodied energy and 21% in cost. This study validates the model’s effectiveness in integrating sustainability goals, enhancing decision-making, collaboration, efficiency and providing superior assessment.

Practical implications

This model delivers a unified approach to sustainable design, cutting carbon footprint and strengthening the industry’s ability to attain sustainable solutions. It holds potential for broader application and future integration of social and economic factors.

Originality/value

The research presents a novel BIM-based MOO model, uniquely focusing on sustainable construction with embodied energy and cost considerations. This holistic and innovative framework extends existing methodologies applicable to various buildings and paves the way for additional research in this area.

Article
Publication date: 12 January 2024

Jingqi Zhang, Shaohua Jiang and Xiaomin Qi

The purpose of this paper is to conduct a comprehensive study on building, fire and evacuation, so as to effectively improve the efficiency of building fire evacuation and the…

Abstract

Purpose

The purpose of this paper is to conduct a comprehensive study on building, fire and evacuation, so as to effectively improve the efficiency of building fire evacuation and the management level of fire evacuation site. Make up for the difficulties of BIM technology in effectively connecting building information and fire data.

Design/methodology/approach

First, this paper establishes a fire model and an evacuation model based on BIM information. Then, the safety index (SI) is introduced as a comprehensive index, and the IRI is established by integrating the SI function to evaluate the safety of evacuation routes. Based on these two indices, the IRI-based fire evacuation model is established.

Findings

This study offers an Improved Risk Index (IRI)-based fire evacuation model, which may achieve effective evacuation in fire scenes. And the model is verified by taking the fire evacuation of a shopping center building as an example.

Originality/value

This paper proposes a fire evacuation principle based on IRI, so that the relevant personnel can comprehensively consider the fire factors and evacuation factors to achieve the optimization of building design, thereby improving the fire safety of buildings.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 6 February 2024

S. P. Sreenivas Padala and Prabhanjan M. Skanda

The purpose of this paper is to develop a building information modelling (BIM)-based multi-objective optimization (MOO) framework for volumetric analysis of buildings during early…

Abstract

Purpose

The purpose of this paper is to develop a building information modelling (BIM)-based multi-objective optimization (MOO) framework for volumetric analysis of buildings during early design stages. The objective is to optimize volumetric spaces (3D) instead of 2D spaces to enhance space utilization, thermal comfort, constructability and rental value of buildings

Design/methodology/approach

The integration of two fundamental concepts – BIM and MOO, forms the basis of proposed framework. In the early design phases of a project, BIM is used to generate precise building volume data. The non-sorting genetic algorithm-II, a MOO algorithm, is then used to optimize extracted volume data from 3D BIM models, considering four objectives: space utilization, thermal comfort, rental value and construction cost. The framework is implemented in context of a school of architecture building project.

Findings

The findings of case study demonstrate significant improvements resulting from MOO of building volumes. Space utilization increased by 30%, while thermal comfort improved by 20%, and construction costs were reduced by 10%. Furthermore, rental value of the case study building increased by 33%.

Practical implications

The proposed framework offers practical implications by enabling project teams to generate optimal building floor layouts during early design stages, thereby avoiding late costly changes during construction phase of project.

Originality/value

The integration of BIM and MOO in this study provides a unique approach to optimize building volumes considering multiple factors during early design stages of a project

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

1 – 10 of 486