Search results

1 – 10 of 127
Article
Publication date: 11 January 2023

Nor Salwani Hashim and Fatimah De’nan

It is generally known that the perforated section such as the castellated section is good to sustain distributed loads but inadequate to sustain highly concentrated loads…

Abstract

Purpose

It is generally known that the perforated section such as the castellated section is good to sustain distributed loads but inadequate to sustain highly concentrated loads. Therefore, it is possible to design the opening in a different arrangement of web opening to achieve section efficiency, thus improving the strength and torsional behaviour of the section with web opening. This study aims to focus on the finite element analysis of I-beam with and without openings in steel section dominated to lateral-torsional buckling behaviour.

Design/methodology/approach

In this work, the analysis of different sizes, shapes and arrangements of web opening is performed by using LUSAS application to conduct numerical analysis on lateral-torsional buckling behaviour. This involves three diameter sizes of web opening, five types of opening shapes and two criteria of the model.

Findings

The section with c-hexagon web opening was placed about 200-mm centre to centre and 100-mm edge distance, contribute to 7.26% increase of buckling capacity. For the section with 150-mm centre to centre and 50-mm edge distance, the occurrence of local buckling contributes to decrease of lateral buckling section capacity to 19.943 kNm, where pure lateral-torsional buckling mostly occurred because of prevented section. Besides that, the web opening diameter was also analysed. The web crippling was observed because of the increase of opening diameter from 0.67 to 0.80 D.

Originality/value

This contributes to a decrease in buckling capacity as figured in the contour of the deformed shape. For Model 1, an increase of buckling capacity (31.46%) is observed when the opening diameter are changed from 0.67 to 0.80 D.

Details

World Journal of Engineering, vol. 21 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 20 May 2022

Fatimah De´nan, Nor Salwani Hashim and Amarpreet Kaur Mahinder Singh

Due to the enormous increase in economic development, structural steel material gives an advantage for the construction of stadiums, factories, bridges and cities building design…

Abstract

Purpose

Due to the enormous increase in economic development, structural steel material gives an advantage for the construction of stadiums, factories, bridges and cities building design. The purpose of this study is to investigate the behaviour of bending, buckling and torsion for I-beam steel section with and without web opening using non-linear finite element analysis.

Design/methodology/approach

The control model was simulated via LUSAS software with the four main parameters which included opening size, layout, shape and orientation. The analysis used a constant beam span which is 3.5 m while the edge distance from the centre of the opening to the edge of the beam is kept constant at 250 mm at each end.

Findings

The analysis results show that the optimum opening size obtained is 0.65 D while optimum layout of opening is Layout 1 with nine web openings. Under bending behaviour, steel section with octagon shapes of web opening shows the highest yield load, yield moment and thus highest structural efficiency as compared to other shapes of openings. Besides, square shape of web opening has the highest structural efficiency under buckling behaviour. The lower buckling load and buckling moment contribute to the higher structural efficiency.

Originality/value

Further, the square web opening with counter clockwise has the highest structural efficiency under torsion behaviour.

Details

World Journal of Engineering, vol. 20 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 12 December 2023

Hamid Naseri, Tadeh Zirakian and Hossein Showkati

Vertical cylindrical welded steel tanks are typical thin-walled structures that are very susceptible to buckling under settlement. The major concern in the design of these…

15

Abstract

Purpose

Vertical cylindrical welded steel tanks are typical thin-walled structures that are very susceptible to buckling under settlement. The major concern in the design of these thin-walled structures is buckling failure. On this basis and by considering the findings of the previously reported research works, the stability performance of open-top steel tanks with various industrial applications under local support edge settlement is further investigated in this paper. This study aims to contribute to the current state-of-the-art in the design and retrofit of such thin-walled structures.

Design/methodology/approach

The buckling behaviors of numerous cylindrical shell models with various height-to-radius, radius-to-thickness and settlement span ratios are investigated through linear and nonlinear buckling analyses. The effects of addition of a top stiffening ring on the buckling behavior of cylindrical steel tanks are studied as well.

Findings

This parametric study demonstrates that the choice of the height-to-radius, radius-to-thickness and settlement span ratios as well as addition of the top stiffening ring can be quite effective on the stiffness and strength performances, deformations and stress distribution as well as intensity of vertical cylindrical welded steel tanks subjected to local support edge settlement.

Originality/value

This research endeavor was formulated on the basis of a comprehensive literature survey and demonstrates the relationship between geometrical as well as stiffening features and buckling stability performance of open-top tanks subjected to local support edge settlement and also provides practical recommendations for design and retrofit purposes.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 7 September 2023

Dileep Bonthu, Bharath H.S., Siddappa I. Bekinal, P. Jeyaraj and Mrityunjay Doddamani

The purpose of this study was to introduce three-dimensional printing (3DP) of functionally graded sandwich foams (FGSFs). This work was continued by predicting the mechanical…

Abstract

Purpose

The purpose of this study was to introduce three-dimensional printing (3DP) of functionally graded sandwich foams (FGSFs). This work was continued by predicting the mechanical buckling and free vibration behavior of 3DP FGSFs using experimental and numerical analyses.

Design/methodology/approach

Initially, hollow glass microballoon-reinforced high-density polyethylene-based polymer composite foams were developed, and these materials were extruded into their respective filaments. These filaments are used as feedstock materials in fused filament fabrication based 3DP for the development of FGSFs. Scanning electron microscopy analysis was performed on the freeze-dried samples to observe filler sustainability. Furthermore, the density, critical buckling load (Pcr), natural frequency (fn) and damping factor of FGSFs were evaluated. The critical buckling load (Pcr) of the FGSFs was estimated using the double-tangent method and modified Budiansky criteria.

Findings

The density of FGSFs decreased with increasing filler percentage. The mechanical buckling load increased with the filler percentage. The natural frequency corresponding to the first mode of the FGSFs exhibited a decreasing trend with an increasing load in the pre-buckling regime and an increase in post-buckled zone, whereas the damping factor exhibited the opposite trend.

Originality/value

The current research work is valuable for the area of 3D printing by developing the functionally graded foam based sandwich beams. Furthermore, it intended to present the buckling behavior of 3D printed FGSFs, variation of frequency and damping factor corresponding to first three modes with increase in load.

Details

Rapid Prototyping Journal, vol. 29 no. 10
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 June 2022

Fatimah De'nan, Nor Salwani Hashim and Xing Yong Sua

With the vast advancement of structural steel properties over the recent decades, structural steel has become the dominate material for the construction of bridges, stadiums…

Abstract

Purpose

With the vast advancement of structural steel properties over the recent decades, structural steel has become the dominate material for the construction of bridges, stadiums, factories and high rise buildings. This paper aims to present the study of structural behaviour and efficiency of tapered steel section with elliptical perforation under shear loading conditions.

Design/methodology/approach

The effect of various elliptical perforation configurations such as tapering ratio, perforation size, perforation orientation and perforation layout on the shear behaviour of tapered steel section has been investigated by using finite element method. A total of 112 models are simulated via LUSAS software.

Findings

It has been found that the most efficient model is the tapered steel section with tapering ratio of 0.3 and vertical elliptical perforation of 0.2 times the section depths which are arranged in Layout 3. The most efficient model has a shear efficiency of 1,094.35 kN, which is 4.12% less than the tapered steel section without perforation, but it could achieve a 0.32% of weight reduction.

Originality/value

The smaller tapering ratio and perforation size contributed to the higher shear buckling capacity and efficiency for the elliptical perforated tapered steel section.

Details

World Journal of Engineering, vol. 20 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 10 November 2023

Varun Sabu Sam, M.S. Adarsh, Garry Robson Lyngdoh, Garry Wegara K. Marak, N. Anand, Khalifa Al-Jabri and Diana Andrushia

The capability of steel columns to support their design loads is highly affected by the time of exposure and temperature magnitude, which causes deterioration of mechanical…

Abstract

Purpose

The capability of steel columns to support their design loads is highly affected by the time of exposure and temperature magnitude, which causes deterioration of mechanical properties of steel under fire conditions. It is known that structural steel loses strength and stiffness as temperature increases, particularly above 400 °C. The duration of time in which steel is exposed to high temperatures also has an impact on how much strength it loses. The time-dependent response of steel is critical when estimating load carrying capacity of steel columns exposed to fire. Thus, investigating the structural response of cold-formed steel (CFS) columns is gaining more interest due to the nature of such structural elements.

Design/methodology/approach

In this study, experiments were conducted on two CFS configurations: back-to-back (B-B) channel and toe-to-toe (T-T) channel sections. All CFS column specimens were exposed to different temperatures following the standard fire curve and cooled by air or water. A total of 14 tests were conducted to evaluate the capacity of the CFS sections. The axial resistance and yield deformation were noted for both section types at elevated temperatures. The CFS column sections were modelled to simulate the section's behaviour under various temperature exposures using the general-purpose finite element (FE) program ABAQUS. The results from FE modelling agreed well with the experimental results. Ultimate load of experiment and finite element model (FEM) are compared with each other. The difference in percentage and ratio between both are presented.

Findings

The results showed that B-B configuration showed better performance for all the investigated parameters than T-T sections. A noticeable loss in the ultimate strength of 34.5 and 65.6% was observed at 90 min (986℃) for B-B specimens cooled using air and water, respectively. However, the reduction was 29.9 and 46% in the T-T configuration, respectively.

Originality/value

This research paper focusses on assessing the buckling strength of heated CFS sections to analyse the mode of failure of CFS sections with B-B and T-T design configurations under the effect of elevated temperature.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 7 November 2023

Matheus Francisco, João Pereira, Lucas Oliveira, Sebastião Simões Cunha and G.F. Gomes

The present paper aims at the multi-objective optimization of a reentrant hexagonal cell auxetic structure. In addition, a parametric analysis will be carried out to verify how…

30

Abstract

Purpose

The present paper aims at the multi-objective optimization of a reentrant hexagonal cell auxetic structure. In addition, a parametric analysis will be carried out to verify how each of the design factors impact each of the responses.

Design/methodology/approach

The multi-objective optimization of five different responses of an auxetic model was considered: mass, critical buckling load under compression effort, natural frequency, Poisson's ratio and failure load. The response surface methodology was applied, and a new meta-heuristic of optimization called the multi-objective Lichtenberg algorithm was applied to find the optimized configuration of the model. It was possible to increase the failure load by 26.75% in compression performance optimization. Furthermore, in the optimization of modal performance, it was possible to increase the natural frequency by 37.43%. Finally, all 5 responses analyzed simultaneously were optimized. In this case, it was possible to increase the critical buckling load by 42.55%, the failure load by 28.70% and reduce the mass and Poisson's ratio by 15.97 and 11%, respectively. This paper addresses something new in the scientific world to date when evaluating in a multi-objective optimization problem, the compression and modal performance of an auxetic reentrant model.

Findings

It was possible to find multi-objective optimized structures. It was possible to increase the critical buckling load by 42.82%, and the failure load in compression performance by 26.75%. Furthermore, in the optimization of modal performance, it was possible to increase the natural frequency by 37.43%, and decrease the mass by 15.97%. Finally, all 5 responses analyzed simultaneously were optimized. In this case, it was possible to increase the critical buckling load by 42.55%, increase the failure load by 28.70% and reduce the mass and Poisson's ratio by 15.97 and 11%, respectively.

Originality/value

There is no work in the literature to date that performed the optimization of 5 responses simultaneously of a reentrant hexagonal cell auxetic structure. This paper also presents an unprecedented statistical analysis in the literature that verifies how the design factors impact each of the responses.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 21 November 2023

Peyman Aghdasi, Shayesteh Yousefi and Reza Ansari

In this paper, based on the density functional theory (DFT) and finite element method (FEM), the elastic, buckling and vibrational behaviors of the monolayer bismuthene are…

65

Abstract

Purpose

In this paper, based on the density functional theory (DFT) and finite element method (FEM), the elastic, buckling and vibrational behaviors of the monolayer bismuthene are studied.

Design/methodology/approach

The computed elastic properties based on DFT are used to develop a finite element (FE) model for the monolayer bismuthene in which the Bi-Bi bonds are simulated by beam elements. Furthermore, mass elements are used to model the Bi atoms. The developed FE model is used to compute Young's modulus of monolayer bismuthene. The model is then used to evaluate the buckling force and fundamental natural frequency of the monolayer bismuthene with different geometrical parameters.

Findings

Comparing the results of the FEM and DFT, it is shown that the proposed model can predict Young's modulus of the monolayer bismuthene with an acceptable accuracy. It is also shown that the influence of the vertical side length on the fundamental natural frequency of the monolayer bismuthene is not significant. However, vibrational characteristics of the bismuthene are significantly affected by the horizontal side length.

Originality/value

DFT and FEM are used to study the elastic, vibrational and buckling properties of the monolayer bismuthene. The developed model can be used to predict Young's modulus of the monolayer bismuthene accurately. Effect of the vertical side length on the fundamental natural frequency is negligible. However, vibrational characteristics are significantly affected by the horizontal side length.

Details

Engineering Computations, vol. 41 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 29 March 2024

Hubannur Seremet and Nazim Babacan

This paper aims to examine the static compression characteristics of cell topologies in body-centered cubic with vertical struts (BCCZ) and face-centered cubic with vertical…

Abstract

Purpose

This paper aims to examine the static compression characteristics of cell topologies in body-centered cubic with vertical struts (BCCZ) and face-centered cubic with vertical struts (FCCZ) along with novel BCCZZ and FCCZZ lattice structures.

Design/methodology/approach

The newly developed structures were obtained by adding extra interior vertical struts into the BCCZ and FCCZ configurations. The samples, composed of the AlSi10Mg alloy, were fabricated using the selective laser melting (SLM) additive manufacturing technique. The specific compressive strength and failure behavior of the manufactured lattice structures were investigated, and comparative analysis among them was done.

Findings

The results revealed that the specific strength of BCCZZ and FCCZZ samples with 0.5 mm strut diameter exhibited approximately a 23% and 18% increase, respectively, compared with the BCCZ and FCCZ samples with identical strut diameters. Moreover, finite element analysis was carried out to simulate the compressive response of the lattice structures, which could be used to predict their strength and collapse mode. The findings showed that while the local buckling of lattice cells is the major failure mode, the samples subsequently collapsed along a diagonal shear band.

Originality/value

An original and systematic investigation was conducted to explore the compression properties of newly fabricated lattice structures using SLM. The results revealed that the novel FCCZZ and BCCZZ structures were found to possess significant potential for load-bearing applications.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 2 March 2023

Aamir Hassan and Javed Ahmad Bhat

Concrete-filled double skin tube (CFDST) columns are considered one of the most effective steel-concrete composite sections owing to the higher load carrying capacity as compared…

Abstract

Purpose

Concrete-filled double skin tube (CFDST) columns are considered one of the most effective steel-concrete composite sections owing to the higher load carrying capacity as compared to its counterpart concrete-filled tube (CFT) columns. This paper aims to numerically investigate the performance of axially loaded, circular CFDST short columns, with the innovative strengthening technique of providing stiffeners in outer tubes. Circular steel hollow sections have been adopted for inner as well as outer tubes, while varying the length of rectangular steel stiffeners, fixed inside the outer tubes only, to check the effect of stiffeners in partially and full-length stiffened CFDST columns.

Design/methodology/approach

The behaviour of these CFDST columns is investigated numerically by using a verified finite element analysis (FEA) model from the ABAQUS. The behaviour of 20-unstiffened, 80-partially stiffened and 20-full-length stiffened CFDST columns is studied, while varying the strength of steel (fyo = 250–750 MPa) and concrete (30–90 MPa).

Findings

The FEA results are verified by comparing them with the previous test results. FEA study has exhibited that, there is a 7%–25% and 39%–49% increase in peak-loads in partially stiffened and full-length stiffened CFDST columns, respectively, compared to unstiffened CFDST columns.

Originality/value

Enhanced strength has been observed in partially stiffened and full-length stiffened CFDST columns as compared to unstiffened CFDST columns. Also, a significant effect of strength of concrete has not been observed as compared to the strength of steel.

Details

World Journal of Engineering, vol. 21 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 10 of 127