Search results

1 – 10 of 227
Article
Publication date: 5 June 2023

Prashant Kumar Choudhary

The objective of the present work is to present the design optimization of composite cylindrical shell subjected to an axial compressive load and lateral pressure.

Abstract

Purpose

The objective of the present work is to present the design optimization of composite cylindrical shell subjected to an axial compressive load and lateral pressure.

Design/methodology/approach

A novel optimization method is developed to predict the optimal fiber orientation in composite cylindrical shell. The optimization is carried out by coupling analytical and finite element (FE) results with a genetic algorithm (GA)-based optimization scheme developed in MATLAB. Linear eigenvalue were performed to evaluate the buckling behaviour of composite cylinders. In analytical part, besides the buckling analysis, Tsai-Wu failure criteria are employed to analyse the failure of the composite structure.

Findings

The optimal result obtained through this study is compared with traditionally used laminates with 0, 90, ±45 orientation. The results suggest that the application of this novel optimization algorithm leads to an increase of 94% in buckling strength.

Originality/value

The proposed optimal fiber orientation can provide a practical and efficient way for the designers to evaluate the buckling pressure of the composite shells in the design stage.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 28 April 2023

Fatimah De’nan, Nor Salwani Hashim and Ngo Siew Ting

Recently, this steel section has found increasing popularity in residential, industrial and commercial buildings with their high load-carrying capacity due to the nature of high…

Abstract

Purpose

Recently, this steel section has found increasing popularity in residential, industrial and commercial buildings with their high load-carrying capacity due to the nature of high strength to weight ratio properties. However, the rise on the price of steel section should be more emphasized; therefore, the optimization in steel section design is needed to overcome the issue of material cost. As such, tapered steel sections save on material use, while the introduction of web openings allows the placement of mechanical and electrical services, plumbing and also aesthetic design considerations.

Design/methodology/approach

The purpose of this study is to investigate the lateral torsional buckling behavior of a tapered steel section with an ellipse-shaped opening by analyzing its structural parameters. To achieve this, the finite element analysis (FEA) of the section is modeled using LUSAS software, which allows for a detailed analysis of the section's behavior under varying loads and conditions. It involves the variation in web opening size, opening layout, opening rotation angle and the tapering ratio. Eigenvalue buckling analysis is adopted to know the parametric effects of each 108 model. The size of opening varies from 0.2 to 0.5 d of the total depth where the opening located. There are three type of layouts applied in this study, which are the layouts A, B and C. There are three types of rotation angles for the ellipse-shaped opening, including the non-rotated vertical opening and two additional types formed by rotating the opening 45 degrees clockwise and counterclockwise around the center-point of the ellipse. A fixed-free boundary condition was applied, resulting in a simulation of a cantilever beam. The models are fixed at one end with a larger depth, and free at the other end with a smaller depth. Loading condition is an application of 10 kN/m uniform distributed load in the direction of gravity along the mid-span of the top flange.

Findings

It is observed that the model 82 with Layout A, tapering ratio 0.3, opening size 0.5 d and opening rotated in 45 degree anti-clockwise direction results in the highest structural efficiency among the 108 models. Therefore, the buckling moment of model 82 is 1,013.08 kNm with structural efficiency of 481.26, which shows an increase of 3.17% compared to the controlled model.

Originality/value

The FEA results shows a significant increase in ductility and stiffness of the tapered steel section with elipse shape opening and consequently changes in the behaviour of yield point.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 28 February 2023

Haiyang Hu, Yu Wang, Chenchen Lian and Peiyan Wang

In this paper, an attempt is made to obtain buckling loads, ultimate bearing capacity and other required structural characteristics of grid structure panels. The numerical method…

Abstract

Purpose

In this paper, an attempt is made to obtain buckling loads, ultimate bearing capacity and other required structural characteristics of grid structure panels. The numerical method for post-buckling behavior analysis of panels involving multiple invisible damages is also presented.

Design/methodology/approach

In this paper, two bidirectional stiffened composite panels are manufactured and tested. Multiple discrete invisible damages are introduced in different positions of the stringers, and the experimental and simulation investigation of buckling and post-buckling were carried out on the damaged stiffened panels.

Findings

The simulation load–displacement curves are compared with the experimental results, and it is found that the simulation model can well predict the occurrence of buckling and failure loads. The strain curve shows that the rate of strain change at the damaged site is greater than that at the undamaged site, which reflects that the debond is more likely occurred at the damaged site. The simulation verifies that the panel is usually crushed due to matrix compression and fiber–matrix shear.

Originality/value

In this paper, post-buckling tests and numerical simulations of bidirectional stiffened composite panels with impact damage were carried out. Two panels with four longitudinal stringers and two transverse stringers were manufactured and tested. The buckling and post-buckling characteristics of the grid structure are obtained, and the failure mechanism of the structure is explained. This is helpful for the design of wall panel structure.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 11 January 2023

Nor Salwani Hashim and Fatimah De’nan

It is generally known that the perforated section such as the castellated section is good to sustain distributed loads but inadequate to sustain highly concentrated loads…

Abstract

Purpose

It is generally known that the perforated section such as the castellated section is good to sustain distributed loads but inadequate to sustain highly concentrated loads. Therefore, it is possible to design the opening in a different arrangement of web opening to achieve section efficiency, thus improving the strength and torsional behaviour of the section with web opening. This study aims to focus on the finite element analysis of I-beam with and without openings in steel section dominated to lateral-torsional buckling behaviour.

Design/methodology/approach

In this work, the analysis of different sizes, shapes and arrangements of web opening is performed by using LUSAS application to conduct numerical analysis on lateral-torsional buckling behaviour. This involves three diameter sizes of web opening, five types of opening shapes and two criteria of the model.

Findings

The section with c-hexagon web opening was placed about 200-mm centre to centre and 100-mm edge distance, contribute to 7.26% increase of buckling capacity. For the section with 150-mm centre to centre and 50-mm edge distance, the occurrence of local buckling contributes to decrease of lateral buckling section capacity to 19.943 kNm, where pure lateral-torsional buckling mostly occurred because of prevented section. Besides that, the web opening diameter was also analysed. The web crippling was observed because of the increase of opening diameter from 0.67 to 0.80 D.

Originality/value

This contributes to a decrease in buckling capacity as figured in the contour of the deformed shape. For Model 1, an increase of buckling capacity (31.46%) is observed when the opening diameter are changed from 0.67 to 0.80 D.

Details

World Journal of Engineering, vol. 21 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 20 May 2022

Fatimah De´nan, Nor Salwani Hashim and Amarpreet Kaur Mahinder Singh

Due to the enormous increase in economic development, structural steel material gives an advantage for the construction of stadiums, factories, bridges and cities building design…

Abstract

Purpose

Due to the enormous increase in economic development, structural steel material gives an advantage for the construction of stadiums, factories, bridges and cities building design. The purpose of this study is to investigate the behaviour of bending, buckling and torsion for I-beam steel section with and without web opening using non-linear finite element analysis.

Design/methodology/approach

The control model was simulated via LUSAS software with the four main parameters which included opening size, layout, shape and orientation. The analysis used a constant beam span which is 3.5 m while the edge distance from the centre of the opening to the edge of the beam is kept constant at 250 mm at each end.

Findings

The analysis results show that the optimum opening size obtained is 0.65 D while optimum layout of opening is Layout 1 with nine web openings. Under bending behaviour, steel section with octagon shapes of web opening shows the highest yield load, yield moment and thus highest structural efficiency as compared to other shapes of openings. Besides, square shape of web opening has the highest structural efficiency under buckling behaviour. The lower buckling load and buckling moment contribute to the higher structural efficiency.

Originality/value

Further, the square web opening with counter clockwise has the highest structural efficiency under torsion behaviour.

Details

World Journal of Engineering, vol. 20 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 11 July 2022

Xiaomin Zhao, Fuminobu Ozaki, Takeo Hirashima, Kei Kimura, Yukio Murakami, Jun-ichi Suzuki and Naoya Yotsumoto

The main purpose of this study was to propose theoretical calculation models to evaluate the theoretical bending strengths of welded wide-flange section steel beams with local…

Abstract

Purpose

The main purpose of this study was to propose theoretical calculation models to evaluate the theoretical bending strengths of welded wide-flange section steel beams with local buckling at elevated temperatures.

Design/methodology/approach

Steady-state tests using various test parameters, including width-thickness ratios (Class 2–4) and specimen temperatures (ambient temperature, 400, 500, 600, 700, and 800°C), were performed on 18 steel beam specimens using roller supports to examine the maximum bending moment and bending strength after local buckling. A detailed calculation model (DCM) based on the equilibrium of the axial force in the cross-section and a simple calculation model (SCM) for a practical fire-resistant design were proposed. The validity of the calculation models was verified using the bending test results.

Findings

The strain concentration at the local buckling cross-section was mitigated in the elevated-temperature region, resulting in a small bending moment degradation after local buckling. The theoretical bending strengths after local buckling, evaluated from the calculation models, were in good agreement with the test results at elevated temperatures.

Originality/value

The effect of local buckling on the bending behaviour after the maximum bending strength in high-temperature regions was quantified. Two types of calculation models were proposed to evaluate the theoretical bending strength after local buckling.

Details

Journal of Structural Fire Engineering, vol. 14 no. 2
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 6 October 2021

Kaveh Salmalian, Ali Alijani and Habib Ramezannejad Azarboni

The purpose of this study is to investigate the post-buckling analysis of functionally graded columns by using three analytical, approximate and numerical methods. A pre-defined…

Abstract

Purpose

The purpose of this study is to investigate the post-buckling analysis of functionally graded columns by using three analytical, approximate and numerical methods. A pre-defined function as an initial assumption for the post-buckling path is introduced to solve the differential equation. The finite difference method is used to approximate the lateral deflection of the column based on the differential equation. Moreover, the finite element method is used to derive the tangent stiffness matrix of the column.

Design/methodology/approach

The non-linear buckling analysis of functionally graded materials is carried out by using three analytical, finite difference and finite element methods. The elastic deformation and Euler-Bernoulli beam theory are considered to establish the constitutive and kinematics relations, respectively. The governing differential equation of the post-buckling problem is derived through the energy method and the calculus variation.

Findings

An incremental iterative solution and the perturbation of the displacement vector at the critical buckling point are performed to determine the post-buckling path. The convergence of the finite element results and the effects of geometric and material characteristics on the post-buckling path are investigated.

Originality/value

The key point of the research is to compare three methods and to detect error sources by considering the derivation process of relations. This comparison shows that a non-incremental solution in the analytical and finite difference methods and an initial assumption in the analytical method lead to an error in results. However, the post-buckling path in the finite element method is traced by the updated tangent stiffness matrix in each load step without any initial limitation.

Details

Journal of Engineering, Design and Technology , vol. 21 no. 3
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 12 December 2023

Hamid Naseri, Tadeh Zirakian and Hossein Showkati

Vertical cylindrical welded steel tanks are typical thin-walled structures that are very susceptible to buckling under settlement. The major concern in the design of these…

15

Abstract

Purpose

Vertical cylindrical welded steel tanks are typical thin-walled structures that are very susceptible to buckling under settlement. The major concern in the design of these thin-walled structures is buckling failure. On this basis and by considering the findings of the previously reported research works, the stability performance of open-top steel tanks with various industrial applications under local support edge settlement is further investigated in this paper. This study aims to contribute to the current state-of-the-art in the design and retrofit of such thin-walled structures.

Design/methodology/approach

The buckling behaviors of numerous cylindrical shell models with various height-to-radius, radius-to-thickness and settlement span ratios are investigated through linear and nonlinear buckling analyses. The effects of addition of a top stiffening ring on the buckling behavior of cylindrical steel tanks are studied as well.

Findings

This parametric study demonstrates that the choice of the height-to-radius, radius-to-thickness and settlement span ratios as well as addition of the top stiffening ring can be quite effective on the stiffness and strength performances, deformations and stress distribution as well as intensity of vertical cylindrical welded steel tanks subjected to local support edge settlement.

Originality/value

This research endeavor was formulated on the basis of a comprehensive literature survey and demonstrates the relationship between geometrical as well as stiffening features and buckling stability performance of open-top tanks subjected to local support edge settlement and also provides practical recommendations for design and retrofit purposes.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 7 September 2023

Dileep Bonthu, Bharath H.S., Siddappa I. Bekinal, P. Jeyaraj and Mrityunjay Doddamani

The purpose of this study was to introduce three-dimensional printing (3DP) of functionally graded sandwich foams (FGSFs). This work was continued by predicting the mechanical…

Abstract

Purpose

The purpose of this study was to introduce three-dimensional printing (3DP) of functionally graded sandwich foams (FGSFs). This work was continued by predicting the mechanical buckling and free vibration behavior of 3DP FGSFs using experimental and numerical analyses.

Design/methodology/approach

Initially, hollow glass microballoon-reinforced high-density polyethylene-based polymer composite foams were developed, and these materials were extruded into their respective filaments. These filaments are used as feedstock materials in fused filament fabrication based 3DP for the development of FGSFs. Scanning electron microscopy analysis was performed on the freeze-dried samples to observe filler sustainability. Furthermore, the density, critical buckling load (Pcr), natural frequency (fn) and damping factor of FGSFs were evaluated. The critical buckling load (Pcr) of the FGSFs was estimated using the double-tangent method and modified Budiansky criteria.

Findings

The density of FGSFs decreased with increasing filler percentage. The mechanical buckling load increased with the filler percentage. The natural frequency corresponding to the first mode of the FGSFs exhibited a decreasing trend with an increasing load in the pre-buckling regime and an increase in post-buckled zone, whereas the damping factor exhibited the opposite trend.

Originality/value

The current research work is valuable for the area of 3D printing by developing the functionally graded foam based sandwich beams. Furthermore, it intended to present the buckling behavior of 3D printed FGSFs, variation of frequency and damping factor corresponding to first three modes with increase in load.

Details

Rapid Prototyping Journal, vol. 29 no. 10
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 18 July 2022

Thac Quang Nguyen, Xuan Tung Nguyen, Tri N. M. Nguyen, Thanh Bui-Tien and Jong Sup Park

The strength and stiffness of steel deteriorate rapidly at elevated temperatures. Thus, the characteristics of steel structures exposed to fire have been concerned in recent…

Abstract

Purpose

The strength and stiffness of steel deteriorate rapidly at elevated temperatures. Thus, the characteristics of steel structures exposed to fire have been concerned in recent years. Most studies on the fire response of steel structures were conducted at uniformly distributed temperatures. This study aims to evaluate the buckling capacity of steel H-beams subjected to different loading conditions under non-uniform heating.

Design/methodology/approach

A numerical investigation was conducted employing finite element analysis software, ABAQUS. A comparison between the numerical analysis results and the experimental data from previous studies was conducted to verify the beam model. Simply supported beams were loaded with several loading conditions including one end moment, end equal moments, uniformly distributed load and concentrated load at midspan. The effects of initial imperfections were considered. The buckling capacities of steel beams under fire using the existing fire design code and the previous study were also generated and compared.

Findings

The results showed that the length-to-height ratio and loading conditions have a great effect on the buckling resistance of steel beams under fire. The capacity of steel beams under non-uniform temperature distribution using the existing fire design code and the previous study can give unconservative values or too conservative values depending on loading conditions. The maximum differences of unconservative and conservative values are −44.5 and 129.2% for beams subjected to end equal moments and one end moment, respectively.

Originality/value

This study provides the buckling characteristics of steel beams under non-uniform temperature considering the influences of initial imperfections, length-to-height ratios, and loading conditions. This study will be beneficial for structural engineers in properly evaluating structures under non-uniform heating conditions.

Details

Journal of Structural Fire Engineering, vol. 14 no. 2
Type: Research Article
ISSN: 2040-2317

Keywords

1 – 10 of 227