Search results

1 – 2 of 2
Article
Publication date: 22 March 2024

Muhammed Turan Aslan, Bahattin Kanber, Hasan Demirtas and Bilal Sungur

The purpose of this study is analysis of deformation and vibrations of turbine blades produced by high electrolyte pressure during electrochemical machining.

Abstract

Purpose

The purpose of this study is analysis of deformation and vibrations of turbine blades produced by high electrolyte pressure during electrochemical machining.

Design/methodology/approach

An experimental setup was designed, experiments were conducted and the obtained results were compared with the finite element results. The deformations were measured according to various flow rates of electrolyte. In finite element calculations, the pressure distribution created by the electrolyte on the blade surface was obtained in the ANSYS® (A finite element analysis software) Fluent software and transferred to the static structural where the deformation analysis was carried out. Three different parameters were examined, namely blade thickness, blade material and electrolyte pressure on blade disk caused by mass flow rate. The deformation results were compared with the gap distances between cathode and anode.

Findings

Large deformations were obtained at the free end of the blade and the most curved part of it. The appropriate pressure values for the electrolyte to be used in the production of blisk blades were proposed numerically. It has been determined that high pressure applications are not suitable for gap distance lower than 0.5 mm.

Originality/value

When the literature is examined, it is required that the high speed flow of the electrolyte is desired in order to remove the parts that are separated from the anode from the machining area during electrochemical machining. However, the electrolyte flowing at high speeds causes high pressure in the blisk blades, excessive deformation and vibration of the machined part, and as a result, contact of the anode with the cathode. This study provides important findings for smooth electro chemical machining at high electrolyte flows.

Details

Multidiscipline Modeling in Materials and Structures, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1573-6105

Keywords

Book part
Publication date: 19 March 2024

John Thomas Flynn and Lloyd Levine

A quick search of the headlines of major newspapers reveals a treasure trove of technology procurement gone wrong. While the private sector seems to adopt and implement new…

Abstract

A quick search of the headlines of major newspapers reveals a treasure trove of technology procurement gone wrong. While the private sector seems to adopt and implement new technology seamlessly and quickly to deliver for customers, the government struggles to accomplish technology purchases and integrations with the same ease. As governments in the United States are looking to retain their current workforce and attract the next generation of workers, the technological capabilities and ethos of governments will be paramount. With nearly every industry being transformed by technology and Generation T being the first generation to have an ingrained “technology first” mindset, the ability of governments to attract these workers depends, in large part, on the ability to transform their government technology culture, policies, and practices.

In this chapter, the authors examine the administrative branch and observe two key components at the root of most technology failures: poor organizational structure in the bureaucracy and the lack of an empowered Chief Information/Technology Officer. Building upon case studies from Massachusetts and California, this chapter looks at the factors related to failure or success to understand the technology procurement culture. The chapter concludes by presenting four key “best practice” principles of public policy and administration that can be implemented by almost any governmental entity to improve their acquisition and implementation of technology.

Details

Technology vs. Government: The Irresistible Force Meets the Immovable Object
Type: Book
ISBN: 978-1-83867-951-4

Keywords

1 – 2 of 2