Search results

1 – 10 of 97
Article
Publication date: 1 July 2004

Sukanta K. Dash, Swasti Sunder Mondal and Satish K. Ajmani

Two‐dimensional numerical simulations have been performed using a finite volume method that employs unstructured grids with cell‐wise local refinement and an interface‐capturing…

Abstract

Two‐dimensional numerical simulations have been performed using a finite volume method that employs unstructured grids with cell‐wise local refinement and an interface‐capturing scheme to predict the shape of the free surface, thus simulating the surface wave that is created in a mold due to the flow from the submerged entry nozzle (SEN). Simulation has been done for 1:6.25 aspect ratio of the mold having a height of 2 m with parallel rectangular ports as well as 15° upward and downward ports. It has been found that for low inlet velocity of the SEN (<1 m/s) the maximum wave amplitude of the surface remains below 12 mm and no outside air is entrapped by the wave to form a bubble. However, for high inlet velocity (2 m/s or more) there is considerable fluctuations on the free surface and the maximum wave amplitude shoot up beyond 70 mm at the start up and slowly falls to about 30 mm entrapping air bubbles from the surroundings. The movement of the air bubble within the mold and its rise to the free surface where it subsequently collapses has been captured well in the numerical simulation. The overall shape of the free surface matches well, excepting the initial transience, with that of the experimentally observed free surface, although the free surface never attains a perfect steady shape neither in the experiment nor in the numerical simulation due to its continuous oscillation and breaking.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 14 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 4 January 2013

Bahni Ray, Gautam Biswas, Ashutosh Sharma and Samuel W.J. Welch

The purpose of this paper is to present a numerical approach for investigating different phenomena during multiple liquid drop impact on air‐water interface.

Abstract

Purpose

The purpose of this paper is to present a numerical approach for investigating different phenomena during multiple liquid drop impact on air‐water interface.

Design/methodology/approach

The authors have used the coupled level‐set and volume‐of‐fluid (CLSVOF) method to explore the different phenomena during multi‐drop impact on liquid‐liquid interface. Complete numerical simulation is performed for two‐dimensional incompressible flow, which is described in axisymmetric coordinates.

Findings

During drop pair impact at very low impact velocities, the process of partial coalescence is observed where the process of pinch off is different than single drop impact. At higher impact velocities, phenomena such as bubble entrapment are observed.

Originality/value

In this paper, a new approach has been developed to simulate consecutive drop impact on a liquid pool.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 23 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 June 2005

Satish K. Ajmani, Swasti S. Mondal and Sukanta K. Dash

The objective of the research work is to predict the volume of fluid drained from a cylindrical vessel without entrapping air through the drainpipe, and hence predict the location…

Abstract

Purpose

The objective of the research work is to predict the volume of fluid drained from a cylindrical vessel without entrapping air through the drainpipe, and hence predict the location of the free surface of the liquid in the vessel.

Design/methodology/approach

A two‐dimensional axi‐symmetric numerical simulation has been made using a finite volume method that employs unstructured grids with cell‐wise local refinement and an interface capturing scheme to predict the shape of the free surface of water in a cylindrical vessel, thus simulating the entrapment of air in the drainpipe connected to the vessel.

Findings

A drain cover was placed on top of the drainpipe to delay the entry of air into the drainpipe. It was found that an increase in the diameter of the drain cover increases the amount of liquid to be drained out before the air could enter into the drainpipe. It was found that air enters the drainpipe at a particular height of the liquid in the vessel. However, when an initial rotational velocity was imparted to the liquid, the height of liquid when air enters the drainpipe depends on the initial bath height. As the initial bath height increases, air enters the drainpipe at a progressively higher bath height. But surprisingly when the drain cover is put in place the initial bath height, again, has no effect on the height of the liquid (in the vessel).

Practical implications

The outcome of the present research work has direct implications for steel making. If the drainpipe can be connected to the ladle the way it has been discussed in this paper then more steel can be drained before stopping the drainage in order to avoid air or slag entrapment.

Originality/value

The idea of putting a drain cover, using a larger diameter drainpipe and making the drainpipe connection to the vessel different so as to delay the appearance of air at the drainpipe is a new finding and the idea can be used by steel makers.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 15 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 15 June 2015

Wenchao Zhou, Drew Loney, Andrei G. Fedorov, F. Levent Degertekin and David W. Rosen

– The aim of this paper is to advance the understanding of the droplet deposition process to better predict and control the manufacturing results for ink-jet deposition.

Abstract

Purpose

The aim of this paper is to advance the understanding of the droplet deposition process to better predict and control the manufacturing results for ink-jet deposition.

Design/methodology/approach

As material interface has both geometric and physical significance to manufacturing, the approach the authors take is to study the interface evolution during the material joining process in ink-jet deposition using a novel shape metric and a previously developed powerful simulation tool. This tool is an experimentally validated numerical solver based on the combination of the lattice Boltzmann method and the phase-field model that enabled efficient simulation of multiple-droplet interactions in three dimensions.

Findings

The underlying physics of two-droplet interaction is carefully examined, which provides deep insights into the effects of the printing conditions on the interface evolution of multiple-droplet interaction. By studying line printing, it is found that increasing impact velocity or decreasing fluid viscosity can reduce manufacturing time. For array printing, the authors have found the issue of air bubble entrapment that can lead to voids in the manufactured parts.

Research limitations/implications

The array of droplets impinges simultaneously, in contrast to most ink-jet printers. Sequential impingement of lines of droplet needs to be studied. Also, impingement on non-planar surfaces has not been investigated yet, but is important for additive manufacturing. Finally, it is recognized that the droplet hardening mechanisms need to be incorporated in the simulation tool to predict and control the final shape and size of the arbitrary features and manufacturing time for ink-jet deposition.

Practical implications

The research findings in this paper imply opportunities for optimization of printing conditions and print head design. Furthermore, if precise droplet control can be achieved, it may be possible to eliminate the need for leveling roller in the current commercial printers to save machine and manufacturing cost.

Originality/value

This work represents one of the first attempts for a systematic study of the interface dynamics of multiple-droplet interaction in ink-jet deposition enabled by the novel shape metric proposed in the paper and a previously developed numerical solver. The findings in this paper advanced the understanding of the droplet deposition process. The physics-based approach of analyzing the simulation results of the interface dynamics provides deep insights into how to predict and control the manufacturing relevant outcomes, and optimization of the deposition parameters is made possible under the same framework.

Details

Rapid Prototyping Journal, vol. 21 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 24 June 2020

Snehashis Pal, Gorazd Lojen, Nenad Gubeljak, Vanja Kokol and Igor Drstvensek

Melting, fusion and solidification are the principal mechanisms used in selective laser melting to produce a product. Several thermal phenomena occur during the fabrication…

Abstract

Purpose

Melting, fusion and solidification are the principal mechanisms used in selective laser melting to produce a product. Several thermal phenomena occur during the fabrication process, such as powder melting, melt pool formation, mixing of materials (fusion), rapid solidification, re-melting, high thermal gradient, reheating and cooling. These phenomena result in several types of pores, defects, irregular surfaces, bending and residual stress. This paper aims to focus on the physical behaviors of Ti-6Al-4V alloy at several scanning speeds and their effect on porosity and metallurgical properties.

Design/methodology/approach

Seven scanning speeds between 150  and 1000 mm/s were chosen to observe the occurrence of different pores, defects and microstructural formations and their effect on hardness and tensile properties.

Findings

The various mentioned malformations occur due to the results of possible uncertainties during the melting-fusion-solidification process. Size, shape, number, location and content of the pores varied in different samples. The a cicular a' size changes with different scanning speeds. Eventually, both porosity and microstructure have shown influential consequences on the hardness and tensile properties in the samples manufactured with different scanning speeds.

Originality/value

This study showed the adverse effects of different physical behaviors that occurred during the fabrication process, leading to the formation of complex pores. The causations and plausible solutions of the pore formation are interpreted in this paper. The authors observe that a circular a' size differed with scanning speeds, and these influence the mechanical properties.

Details

Rapid Prototyping Journal, vol. 26 no. 7
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 15 December 2023

Muhammad Arif Mahmood, Chioibasu Diana, Uzair Sajjad, Sabin Mihai, Ion Tiseanu and Andrei C. Popescu

Porosity is a commonly analyzed defect in the laser-based additive manufacturing processes owing to the enormous thermal gradient caused by repeated melting and solidification…

Abstract

Purpose

Porosity is a commonly analyzed defect in the laser-based additive manufacturing processes owing to the enormous thermal gradient caused by repeated melting and solidification. Currently, the porosity estimation is limited to powder bed fusion. The porosity estimation needs to be explored in the laser melting deposition (LMD) process, particularly analytical models that provide cost- and time-effective solutions compared to finite element analysis. For this purpose, this study aims to formulate two mathematical models for deposited layer dimensions and corresponding porosity in the LMD process.

Design/methodology/approach

In this study, analytical models have been proposed. Initially, deposited layer dimensions, including layer height, width and depth, were calculated based on the operating parameters. These outputs were introduced in the second model to estimate the part porosity. The models were validated with experimental data for Ti6Al4V depositions on Ti6Al4V substrate. A calibration curve (CC) was also developed for Ti6Al4V material and characterized using X-ray computed tomography. The models were also validated with the experimental results adopted from literature. The validated models were linked with the deep neural network (DNN) for its training and testing using a total of 6,703 computations with 1,500 iterations. Here, laser power, laser scanning speed and powder feeding rate were selected inputs, whereas porosity was set as an output.

Findings

The computations indicate that owing to the simultaneous inclusion of powder particulates, the powder elements use a substantial percentage of the laser beam energy for their melting, resulting in laser beam energy attenuation and reducing thermal value at the substrate. The primary operating parameters are directly correlated with the number of layers and total height in CC. Through X-ray computed tomography analyses, the number of layers showed a straightforward correlation with mean sphericity, while a converse relation was identified with the number, mean volume and mean diameter of pores. DNN and analytical models showed 2%–3% and 7%–9% mean absolute deviations, respectively, compared to the experimental results.

Originality/value

This research provides a unique solution for LMD porosity estimation by linking the developed analytical computational models with artificial neural networking. The presented framework predicts the porosity in the LMD-ed parts efficiently.

Content available

Abstract

Details

Pigment & Resin Technology, vol. 36 no. 6
Type: Research Article
ISSN: 0369-9420

Content available
Article
Publication date: 1 June 2000

83

Abstract

Details

Industrial Lubrication and Tribology, vol. 52 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Content available
Article
Publication date: 27 June 2008

29

Abstract

Details

Soldering & Surface Mount Technology, vol. 20 no. 3
Type: Research Article
ISSN: 0954-0911

Article
Publication date: 7 November 2016

Yingjie Qiao, Xiaodong Wang, Xiaohong Zhang and Zhipeng Xing

The purpose of this paper is to investigate the preparation and the flexural property of hollow glass microspheres (HGMs) filled resin-matrix composites, which have been widely…

Abstract

Purpose

The purpose of this paper is to investigate the preparation and the flexural property of hollow glass microspheres (HGMs) filled resin-matrix composites, which have been widely applied in deep-sea fields.

Design/methodology/approach

The composites with different contents of HGMs from 47 to 57 Wt.% were studied. The voids in syntactic foams and their flexural properties were investigated.

Findings

The results showed that the voids quantity increased because of the increment of HGM content, whereas the exural strength and the exural modulus decreased. The fracture mechanism of the composites was also investigated by scanning electron microscope, which indicated that the composites failed by the crack extending through the microspheres.

Research limitations/implications

The advantages of HGMs with similar hollow spheres will be further investigated in a future research.

Practical implications

Results demonstrated that the properties of the composite might be tailored for specific application conditions by changing the HGM volume fraction.

Originality/value

The HGM filled resin-matrix composite materials have their unique properties and significant application potential. In this work, the resin-HGM composites were synthesized by mechanically mixing defined quantities of HGMs into epoxy resin, by which a kind of syntactic foams with good flexural properties could be obtained.

Details

Pigment & Resin Technology, vol. 45 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 10 of 97