Search results

1 – 10 of 599
Article
Publication date: 29 April 2021

Bekir Yilmaz Pekmezci and Isil Polat Pekmezci

Material properties, such as shear and compressive strength of masonry, have a crucial impact on the seismic analysis results of masonry structures. Considering that most of the…

Abstract

Purpose

Material properties, such as shear and compressive strength of masonry, have a crucial impact on the seismic analysis results of masonry structures. Considering that most of the historical buildings are masonry structures, the damage caused by obtaining shear strengths with known methods exceeds acceptable limits. Instead of traditional shear strength index tests, this paper presents a test technique that has been developed which causes less damage to the structure, to obtain mechanical properties in masonry structures.

Design/methodology/approach

A new approach to shear testing and a test probe has been developed to minimize the destructive effects of mechanical in situ testing on masonry structures. The comparison of the results obtained with reduced destruction level using the novel shear strength index test probe with those obtained from the traditional method is addressed. Masonry specimens were tested in the laboratory and in situ tests were carried out on 12 historical buildings.

Findings

Test results obtained from the proposed probe shear strength index test were consistent with the results obtained from the conventional shear strength test both at the laboratory setting and in situ. Although a large number of data is needed for the validation of a method, satisfactory agreement with the conventional shear strength index test method was obtained.

Originality/value

The authors believe that the proposed method would give the opportunity to collect more mechanical strength data with much less destruction. The experimental work in the laboratory and in situ tests and their comparisons are the supportive and original values of this research.

Details

International Journal of Building Pathology and Adaptation, vol. 40 no. 5
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 9 April 2018

Mazen J. Al-Kheetan, Mujib M. Rahman and Denis A. Chamberlain

The purpose of this paper is to investigate the performance of new and innovative crystallising materials, so-called moisture blockers, in protecting masonry structures from water…

Abstract

Purpose

The purpose of this paper is to investigate the performance of new and innovative crystallising materials, so-called moisture blockers, in protecting masonry structures from water ingress.

Design/methodology/approach

Two masonry wells were constructed: one with lime mortar and the other with cement-based mortar in order to hold water inside, and then a moisture blocking product was applied at dry and wet conditions to the negative hydrostatic pressure side. The moisture levels of both, the surfaces and the substrate, were then observed for 14 days.

Findings

Results demonstrated that moisture blocking materials are effective methods in reducing the levels of surface moisture for bricks, mortar-brick interface and mortar.

Originality/value

Moisture blockers use the available water in the masonry to block the passage of water to the surface of the masonry, filling pores, cracks and spaces at the interface between mortar and bricks. This approach will deliver a wider understanding of how water-based moisture blockers work and the scenarios in which they are best applied. The pursuit of possible environmentally friendly and sustainable materials for use in the construction industry is the key driver of this research.

Details

International Journal of Building Pathology and Adaptation, vol. 36 no. 1
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 7 July 2017

Puneet Kumar and Gaurav Srivastava

Reinforced concrete structural frames with masonry infills (infill-frames) are commonly used for construction worldwide. While the behavior of such frames has been studied…

Abstract

Purpose

Reinforced concrete structural frames with masonry infills (infill-frames) are commonly used for construction worldwide. While the behavior of such frames has been studied extensively in the context of earthquake loading, studies related to their fire performance are limited. Therefore, this study aims to characterize the behavior of infill-frames under fire exposure by presenting a state-of-the-art literature review of the same.

Design/methodology/approach

Both experimental and computational studies have been included with a special emphasis on numerical modeling (simplified as well as advanced). The cold behavior of the infill-frame and its design requirements in case of fire exposure are first reviewed to set the context. Subsequently, the applicability of numerical modeling strategies developed for modeling cold infill-frames to simulate their behavior under fire is critically examined.

Findings

The major hurdles in developing generic numerical models for analyzing thermo-mechanical behavior of infill-frames are identified as: lack of temperature-dependent material properties, scarcity of experimental studies for validation and idealizations in coupling between thermal and structural analysis.

Originality value

This study presents one of the most popular research problems connected with practical and reliable utilization of numerical models, as a good alternative to expensive traditional furnace testing, in assessing fire resistance of infill-frames. It highlights major challenges in thermo-mechanical modeling of infill-frames and critically reviews the available approaches for modeling infill-frames subjected to fire.

Details

Journal of Structural Fire Engineering, vol. 8 no. 3
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 18 June 2021

Karsten Winther Johansen, Rasmus Nielsen, Carl Schultz and Jochen Teizer

Real-time location sensing (RTLS) systems offer a significant potential to advance the management of construction processes by potentially providing real-time access to the…

Abstract

Purpose

Real-time location sensing (RTLS) systems offer a significant potential to advance the management of construction processes by potentially providing real-time access to the locations of workers and equipment. Many location-sensing technologies tend to perform poorly for indoor work environments and generate large data sets that are somewhat difficult to process in a meaningful way. Unfortunately, little is still known regarding the practical benefits of converting raw worker tracking data into meaningful information about construction project progress, effectively impeding widespread adoption in construction.

Design/methodology/approach

The presented framework is designed to automate as many steps as possible, aiming to avoid manual procedures that significantly increase the time between progress estimation updates. The authors apply simple location tracking sensor data that does not require personal handling, to ensure continuous data acquisition. They use a generic and non-site-specific knowledge base (KB) created through domain expert interviews. The sensor data and KB are analyzed in an abductive reasoning framework implemented in Answer Set Programming (extended to support spatial and temporal reasoning), a logic programming paradigm developed within the artificial intelligence domain.

Findings

This work demonstrates how abductive reasoning can be applied to automatically generate rich and qualitative information about activities that have been carried out on a construction site. These activities are subsequently used for reasoning about the progress of the construction project. Our framework delivers an upper bound on project progress (“optimistic estimates”) within a practical amount of time, in the order of seconds. The target user group is construction management by providing project planning decision support.

Research limitations/implications

The KB developed for this early-stage research does not encapsulate an exhaustive body of domain expert knowledge. Instead, it consists of excerpts of activities in the analyzed construction site. The KB is developed to be non-site-specific, but it is not validated as the performed experiments were carried out on one single construction site.

Practical implications

The presented work enables automated processing of simple location tracking sensor data, which provides construction management with detailed insight into construction site progress without performing labor-intensive procedures common nowadays.

Originality/value

While automated progress estimation and activity recognition in construction have been studied for some time, the authors approach it differently. Instead of expensive equipment, manually acquired, information-rich sensor data, the authors apply simple data, domain knowledge and a logical reasoning system for which the results are promising.

Article
Publication date: 16 July 2021

Vieri Cardinali, Marta Castellini, Maria Teresa Cristofaro, Giorgio Lacanna, Massimo Coli, Mario De Stefano and Marco Tanganelli

This paper aims to contribute to the discussion of the experimental campaigns on Cultural Heritage buildings. By adopting integrated procedures it is possible to limit the…

Abstract

Purpose

This paper aims to contribute to the discussion of the experimental campaigns on Cultural Heritage buildings. By adopting integrated procedures it is possible to limit the invasiveness of the destructive techniques leading to reliable results. The purpose is the proper definition of the structural system, which represents the starting point of the following analysis's phases, not treated in this work. A methodology based on normative references and acknowledged non-destructive and partial destructive strategies has been conceived. The latter aims to an accurate comprehension of the structural information.

Design/methodology/approach

An integrated approach for the structural assessment of cultural heritage buildings is presented. The methodology defines an interdisciplinary procedure based on normative references, non-destructive and minor-destructive techniques. A funnel-shaped workflow is developed to characterize the structural system of the buildings. The non-destructive campaigns are widely extended. Then, in-depth analysis concerning partial demolitions and minor-destructive tests are performed. The dynamic identification of the building is executed to detect its global response. The final validation of the assumed mechanical values is obtained by comparing the experimental modes coming from the ambient vibrations and the analytical modes of the structural modelling.

Findings

This research belongs to the Protocol signed between the Municipality of Florence and Department of Earth's Science and Department of Architecture of the University of Florence for the seismic vulnerability assessment of relevant and strategic buildings.

Research limitations/implications

The descripted methodology is targeted for monuments and special buildings where the use of destructive techniques is not possible or unrecommended.

Social implications

Social implications are related to the conservation of Heritage buildings. The latter deals with: (1) risk assessment of the targeted buildings towards different hazard sources (e.g. earthquakes, floods); (2) knowledge path developed through non-invasive diagnostic campaigns oriented to the conservation of the manufact. Furthermore, the paper encourages towards the recognition of non-destructive techniques and ambient vibration tests for the achievement of higher knowledge levels.

Originality/value

This paper defines a funnel-shaped procedure defining hierarchical roles between the different available strategies. The originality of this contribution is firstly related to the methodological flowchart. It is targeted to limit the invasive tests and consequently achieving accurate levels of knowledge. Secondly, some novelty can be found in the adoption of improvement parameters from a regional database adopting a Bayesian approach.

Details

Journal of Cultural Heritage Management and Sustainable Development, vol. 13 no. 1
Type: Research Article
ISSN: 2044-1266

Keywords

Article
Publication date: 23 September 2022

Amir Amjad Mohammadi, Hadi Safaeipour, Mohammad Reza Chenaghlou, Alireza Behnejad and Roham Afghani Khoraskani

This paper aims at discovering the traditional techniques of Persian architecture for covering large-span spaces with a kind of ribbed vault titled “Karbandi”. This structure is…

Abstract

Purpose

This paper aims at discovering the traditional techniques of Persian architecture for covering large-span spaces with a kind of ribbed vault titled “Karbandi”. This structure is generated by intersecting several arches with a harmonic stellar geometry. Preliminary studies show that span factor affects the structural form of karbandi and large-span cases, despite similar architectural forms, have different structural systems and specific construction methods. The main focus of this paper is how karbandi has been designed and built on large-spans. To answer this question, the configuration and construction of a large-span karbandi in Tabriz Bazaar were recognized.

Design/methodology/approach

Data collection of the research was initially done in three parallel directions through the archival study of restoration documents, direct observation of the corpus of the vaultings and interviews with the master mason of the Haj-Mohammad-Qoli Timche restoration team. Then by cross-referencing the gathered data, the construction process of the karbandi was simulated in Rhino 6 and Grasshoppers software and its BIM-M models were created in three levels of development: LOD300, LOD350 and LOD400. In the next step, the preliminary BIM-M models of the karbandi were presented to the interviewed mason and revised and completed based on his comments.

Findings

Analyzing the BIM models by reverse engineering, resulted in (1) Discovering a unique self-supporting masonry construction method applied for the erection of karbandi vaulting on large-spans. (2) Finding the effect of scale factor on the architectural and structural form of the karbandi vault. (3) Discovering the connection types of the karbandi vault based on the construction details.

Originality/value

Despite the wide applications of karbandi vaults throughout history, very little information of their construction techniques is available. The techniques have mostly been experientially and orally passed down from masters to apprentices and rarely been documented. The quest to design and construct a karbandi vault is therefore like solving a puzzle whose most important guide is historical cases. Due to the geometric complexity of karbandi and its ability to cover large-span spaces, solving the puzzle can lead to achieving some technical ideas for masonry cross-ribbed vaulting. A great riddle of the karbandi vaults is how to design and build them on a large span.

Details

Engineering, Construction and Architectural Management, vol. 31 no. 1
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 26 October 2021

Cecilia Carlorosi, Chiara Giosuè, Van Anh Le Ngoc, Alessandra Mobili, Thi Nguyen Vu Trong, Phung Nguyen Huu Long, Fausto Pugnaloni and Francesca Tittarelli

This paper presents the outcomes of the international project “Protecting Landscape Heritage: a requalification project as an instrument for the re-birth of Quang Tri Old Citadel…

Abstract

Purpose

This paper presents the outcomes of the international project “Protecting Landscape Heritage: a requalification project as an instrument for the re-birth of Quang Tri Old Citadel in Vietnam”, achieved with scientific cooperation between the Università Politecnica delle Marche (Italy) and Hue University of Sciences (Vietnam) funded by the Italian Ministry of Foreign Affairs and International Cooperation and Ministry of Science and Technology of Vietnam. The research focuses on the Quang Tri Citadel, founded in 1809 and now in an advanced state of degradation.

Design/methodology/approach

For the purpose of rehabilitation, the wide multidisciplinary project first examined the historical context of the military model, the architectural aspects of the structure, the characterization of the existing materials, the degradation levels of different parts, and, finally, a proposal of the suggested interventions.

Findings

The original structure and geometry were extrapolated and studied. Building materials were produced with nearby raw materials. Firing temperatures of bricks ranged from 800 to 1,000 °C, hydraulic lime was supposed the binder of the mortar with a calcination temperature lower than 1,000 °C. Damage assessment was provided and after these analyses a requalification project was proposed so the cultural heritage can play a role for the future in the dialog between different cultures.

Originality/value

The requalification project achieved by an integrated analytical approach defines aspects in relation to the restoration of the structures, enabling compliance with the geometry, techniques, building materials used in the original construction and allowing its guardianship and management to align with the historical context of the architectural heritage.

Details

Journal of Cultural Heritage Management and Sustainable Development, vol. 13 no. 4
Type: Research Article
ISSN: 2044-1266

Keywords

Article
Publication date: 25 July 2018

Hau Ching Phyllis Chung and Kemi Adeyeye

The purpose of this paper is twofold: first, to investigate the flood impact on a detached dwelling based on physical attributes related to the positioning, form and orientation…

Abstract

Purpose

The purpose of this paper is twofold: first, to investigate the flood impact on a detached dwelling based on physical attributes related to the positioning, form and orientation of the house, and second, to investigate the effectiveness of property-level protection (PLP) to mitigate the direct structural damage of the house and the degree of floodwater ingress within the house.

Design/methodology/approach

The methods included modelling and simulation within the ANSYS Fluent® computational fluid dynamics software. Flooding scenarios with constrained parameters using theoretical modelling methods/tools were used to test the research hypotheses. Therefore, the results obtained will match the what-if scenarios considered if/based on the standard equations and assumptions made in the idealised model.

Findings

It was found that the position, orientation and form of an individual dwelling with brick and block construction informs the impact of the applied pressure on the structure and water ingress. Increase in pressure on the structure was noted from 0.3 m. All examined PLP mitigated the risk of structural damage if applied in consideration with other interventions e.g. mortar sealing. The use of non-return valves could potentially increase the pressure on the structure, but was also found to be effective in reducing water ingress. Findings should be considered in conjunction with the assumptions and exceptions of this study.

Research limitations/implications

The limitations of this study are that the findings are based on an idealised model of a single detached house, with no landscape obstruction to the watercourse. This mathematical approach concerned with developing the normative models may therefore not fully describe the real-world complex phenomena. But it provides the first vision and an objective basis to answer the questions under study, and to propose usable outputs. Flooding caused from internal sources (e.g. bursting of pipes, roof leaks) or seepage from the ground and moisture through the walls were excluded. Building content was not modelled.

Practical implications

Common property-level flood interventions are typically tested to mitigate water ingress to the house. This study extends this approach to include the prevention of structural damage to the external walls; this can help to avoid the indiscriminate use of property-level flood prevention solutions without full understanding of their degree of effectiveness or impact on the building’s structural integrity. This study is practically significant because it provides outputs and means to examine which intervention(s) are better for delivering flood protection to a standard brick/block detached house type. This knowledge is highly beneficial for relevant stakeholders who can use it to deliver effective property-level flooding resilience measures.

Originality/value

The study provides useful insights for property owners and building professionals to explore suitable, cost-effective single property-level protection against flooding. Furthermore, the effective implementation of interventions can be used to achieve a customised, “fit for purpose” resilience retrofit.

Details

International Journal of Building Pathology and Adaptation, vol. 36 no. 5
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 28 October 2019

Piyoosh Rautela, Girish Chandra Joshi and Shailesh Ghildiyal

The purpose of this study is to estimate the cost of seismic resilience of identified vulnerable lifeline public buildings in earthquake-prone Himalayan province of Uttarakhand in…

Abstract

Purpose

The purpose of this study is to estimate the cost of seismic resilience of identified vulnerable lifeline public buildings in earthquake-prone Himalayan province of Uttarakhand in India.

Design/methodology/approach

Built area of the identified vulnerable lifeline buildings together with prevalent rate of construction has been considered for assessing the cost of seismic resilience while improvised rapid visual screening (RVS) technique, better suited to the built environment in the region, has been used for assessing seismic vulnerability.

Findings

Investment of US$250.08m is assessed as being required for ensuring seismic safety of 56.3, 62.1, 52.9, 64.6, 71.9 and 61.7% surveyed buildings, respectively, of fire and emergency services, police, health, education, local administration and other departments that are to become non-functional after an earthquake and result in a major socio-political turmoil. A total amount of US$467.71m is estimated as being required for making all the buildings of these departments seismically resilient.

Research limitations/implications

Actual investment estimates and reconstruction/retrofitting plans have to be prepared after detailed investigations as RVS technique only provides a preliminary estimate and helps in prioritising buildings for detailed investigations.

Practical implications

This study is intended to provide a snapshot of the state of seismic vulnerability together with the financial resources required for corrective measures. This is to help the authorities in planning phased mobilisation of financial and technical resources for making the built environment seismically resilient.

Social implications

This study is to bring forth awareness on this important issue and consequent public opinion in favour of safety of public facilities to ensure allocation of appropriate financial resources together with changes in techno-legal regime for the cause of earthquake safety. At the same time, this study is to motivate masses to voluntarily assess safety of their neighbourhood and undertake corrective measures.

Originality/value

This study is based on primary data collected by the authors.

Details

International Journal of Disaster Resilience in the Built Environment, vol. 10 no. 5
Type: Research Article
ISSN: 1759-5908

Keywords

Article
Publication date: 24 August 2012

Clare Torney, Alan M. Forster, Craig J. Kennedy and Ewan K. Hyslop

The purpose of this paper is to address the issue of perceptions of suitability of different materials for a repair. The use of highly cementitious materials in the repair of…

Abstract

Purpose

The purpose of this paper is to address the issue of perceptions of suitability of different materials for a repair. The use of highly cementitious materials in the repair of historic masonry is causing great concern due to their incompatibility with adjacent stone and the associated accelerated deterioration which results from their use. The relatively recent development of so‐called “restoration mortars” based on a “mix and go” application, combined with the enhanced weathering of stone in a changing climate, may be contributing to the use of “plastic” repair materials on stone across Scotland.

Design/methodology/approach

Following a literature review, case studies of repairs are presented to highlight the advantages and disadvantages of using such materials, and comparisons are made with the alternative options.

Findings

The case studies presented highlight the use of a number of different stone repair materials, sometimes in combination with stone replacement, representing functional and philosophical approaches to masonry repair. However, the research has also highlighted the increasing use of plastic repairs for large‐scale repair including façade rendering, which fail to incorporate these systematic and informed approaches, and can ultimately lead to failure of repairs.

Originality/value

An evaluation of the current standing of the materials, methods and the extent of this type of repair, is vital for the substantiation of further research, and to enhance the empirical knowledge of in‐use performance, longevity and failure. The increasing emergence of restoration mortars, and their manufacture and supply on an international scale, highlights the global impact and relevance of this research.

Details

Structural Survey, vol. 30 no. 4
Type: Research Article
ISSN: 0263-080X

Keywords

1 – 10 of 599