Search results

1 – 10 of 20
Article
Publication date: 3 December 2020

Na Liu

The purpose of this paper is to study the homoclinic breather waves, rogue waves and multi-soliton waves of the (2 + 1)-dimensional Mel’nikov equation, which describes an…

Abstract

Purpose

The purpose of this paper is to study the homoclinic breather waves, rogue waves and multi-soliton waves of the (2 + 1)-dimensional Mel’nikov equation, which describes an interaction of long waves with short wave packets.

Design/methodology/approach

The author applies the Hirota’s bilinear method, extended homoclinic test approach and parameter limit method to construct the homoclinic breather waves and rogue waves of the (2 + 1)-dimensional Mel’nikov equation. Moreover, multi-soliton waves are constructed by using the three-wave method.

Findings

The results imply that the (2 + 1)-dimensional Mel’nikov equation has breather waves, rogue waves and multi-soliton waves. Moreover, the dynamic properties of such solutions are displayed vividly by figures.

Research limitations/implications

This paper presents efficient methods to find breather waves, rogue waves and multi-soliton waves for nonlinear evolution equations.

Originality/value

The outcome suggests that the extreme behavior of the homoclinic breather waves yields the rogue waves. Moreover, the multi-soliton waves are constructed, including the new breather two-solitary and two-soliton solutions. Meanwhile, the dynamics of these solutions will greatly enrich the diversity of the dynamics of the (2 + 1)-dimensional Mel’nikov equation.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 10 July 2019

Hui Wang, Shou-Fu Tian and Yi Chen

The purpose of this paper is to study the breather waves, rogue waves and solitary waves of an extended (3 + 1)-dimensional Kadomtsev–Petviashvili (KP) equation, which can be used…

Abstract

Purpose

The purpose of this paper is to study the breather waves, rogue waves and solitary waves of an extended (3 + 1)-dimensional Kadomtsev–Petviashvili (KP) equation, which can be used to depict many nonlinear phenomena in fluid dynamics and plasma physics.

Design/methodology/approach

The authors apply the Bell’s polynomial approach, the homoclinic test technique and Hirota’s bilinear method to find the breather waves, rogue waves and solitary waves of the extended (3 + 1)-dimensional KP equation.

Findings

The results imply that the extended (3 + 1)-dimensional KP equation has breather wave, rogue wave and solitary wave solutions. Meanwhile, the authors provide the graphical analysis of such solutions to better understand their dynamical behavior.

Originality/value

These results may help us to further study the local structure and the interaction of solutions in KP-type equations. The authors hope that the results provided in this work can help enrich the dynamic behavior of such equations.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 11 October 2018

Lian-Li Feng and Tian-Tian Zhang

The purpose of this paper is to find homoclinic breather waves, rogue waves and soliton waves for a (3 + 1)-dimensional generalized Kadomtsev–Petviashvili (gKP) equation, which…

Abstract

Purpose

The purpose of this paper is to find homoclinic breather waves, rogue waves and soliton waves for a (3 + 1)-dimensional generalized Kadomtsev–Petviashvili (gKP) equation, which can be used to describe the propagation of weakly nonlinear dispersive long waves on the surface of a fluid.

Design/methodology/approach

The authors apply the extended Bell polynomial approach, Hirota’s bilinear method and the homoclinic test technique to find the rogue waves, homoclinic breather waves and soliton waves of the (3 + 1)-dimensional gKP equation.

Findings

The results imply that the gKP equation admits rogue waves, homoclinic breather waves and soliton waves. Moreover, the authors also find that rogue waves can come from the extreme behavior of the breather solitary wave. The authors analyze the propagation and interaction properties of these solutions to better understand the dynamic behavior of these solutions.

Originality/value

These results may help us to further study the local structure and the interaction of waves in KP-type equations. It is hoped that the results can help enrich the dynamic behavior of such equations.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 9 April 2024

Abdul-Majid Wazwaz

This study aims to investigate two newly developed (3 + 1)-dimensional Kairat-II and Kairat-X equations that illustrate relations with the differential geometry of curves and…

Abstract

Purpose

This study aims to investigate two newly developed (3 + 1)-dimensional Kairat-II and Kairat-X equations that illustrate relations with the differential geometry of curves and equivalence aspects.

Design/methodology/approach

The Painlevé analysis confirms the complete integrability of both Kairat-II and Kairat-X equations.

Findings

This study explores multiple soliton solutions for the two examined models. Moreover, the author showed that only Kairat-X give lump solutions and breather wave solutions.

Research limitations/implications

The Hirota’s bilinear algorithm is used to furnish a variety of solitonic solutions with useful physical structures.

Practical implications

This study also furnishes a variety of numerous periodic solutions, kink solutions and singular solutions for Kairat-II equation. In addition, lump solutions and breather wave solutions were achieved from Kairat-X model.

Social implications

The work formally furnishes algorithms for studying newly constructed systems that examine plasma physics, optical communications, oceans and seas and the differential geometry of curves, among others.

Originality/value

This paper presents an original work that presents two newly developed Painlev\'{e} integrable models with insightful findings.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 27 November 2018

Jin-Jin Mao, Shou-Fu Tian and Tian-Tian Zhang

The purpose of this paper is to find the exact solutions of a (3 + 1)-dimensional non-integrable Korteweg-de Vries type (KdV-type) equation, which can be used to describe the…

Abstract

Purpose

The purpose of this paper is to find the exact solutions of a (3 + 1)-dimensional non-integrable Korteweg-de Vries type (KdV-type) equation, which can be used to describe the stability of soliton in a nonlinear media with weak dispersion.

Design/methodology/approach

The authors apply the extended Bell polynomial approach, Hirota’s bilinear method and the homoclinic test technique to find the rogue waves, homoclinic breather waves and soliton waves of the (3 + 1)-dimensional non-integrable KdV-type equation. The used approach formally derives the essential conditions for these solutions to exist.

Findings

The results show that the equation exists rogue waves, homoclinic breather waves and soliton waves. To better understand the dynamic behavior of these solutions, the authors analyze the propagation and interaction properties of the these solutions.

Originality/value

These results may help to investigate the local structure and the interaction of waves in KdV-type equations. It is hoped that the results can help enrich the dynamic behavior of such equations.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 4 December 2018

Kang Xiaorong and Xian Daquan

The purpose of this paper is to discuss the homoclinic breathe-wave solutions and the singular periodic solutions for (2 + 1)-dimensional generalized shallow water wave (GSWW…

Abstract

Purpose

The purpose of this paper is to discuss the homoclinic breathe-wave solutions and the singular periodic solutions for (2 + 1)-dimensional generalized shallow water wave (GSWW) equation.

Design/methodology/approach

The Hirota bilinear method, the Lie symmetry method and the non-Lie symmetry method are applied to the (2 + 1)D GSWW equation.

Findings

A reduced (1 + 1)D potential KdV equation can be derived, and its soliton solutions are also presented.

Research limitations/implications

As a typical nonlinear evolution equation, some dynamical behaviors are also discussed.

Originality/value

These results are very useful for investigating some localized geometry structures of dynamical behaviors and enriching dynamical features of solutions for the higher dimensional systems.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 June 2023

Na Liu

This paper aims to study the breather, lump-kink and interaction solutions of a (3 + 1)-dimensional generalized shallow water waves (GSWW) equation, which describes water waves…

41

Abstract

Purpose

This paper aims to study the breather, lump-kink and interaction solutions of a (3 + 1)-dimensional generalized shallow water waves (GSWW) equation, which describes water waves propagating in the ocean or is used for simulating weather.

Design/methodology/approach

Hirota bilinear form and the direct method are used to construct breather and lump-kink solutions of the GSWW equation. The “rational-cosh-cos-type” test function is applied to obtain three kinds of interaction solutions.

Findings

The fusion and fission of the interaction solutions between a lump wave and a 1-kink soliton of the GSWW equation are studied. The dynamics of three kinds of interaction solutions between lump, kink and periodic waves are discussed graphically.

Originality/value

This paper studies the breather, lump-kink and interaction solutions of the GSWW equation by using various approaches and provides some phenomena that have not been studied.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 6 August 2019

Jin-Jin Mao, Shou-Fu Tian, Xing-Jie Yan and Tian-Tian Zhang

The purpose of this study is to examine the lump solutions of the (3 + 1)-dimensional nonlinear evolution equations by considering a (3 + 1)-dimensional generalized…

Abstract

Purpose

The purpose of this study is to examine the lump solutions of the (3 + 1)-dimensional nonlinear evolution equations by considering a (3 + 1)-dimensional generalized Kadomtsev–Petviashvili (gKP) equation and a (3 + 1)-dimensional variable-coefficient generalized B-type Kadomtsev–Petviashvili (vcgBKP) equation as examples.

Design/methodology/approach

Based on Hirota’s bilinear theory, a direct method is used to examine the lump solutions of these two equations.

Findings

The complete non-elastic interaction solutions between a lump and a stripe are also discussed for the equations, which show that the lump solitons are swallowed by the stripe solitons.

Originality/value

The dynamics of these solutions are analyzed to enrich the diversity of the dynamics of high-dimensional KP-type nonlinear wave equations.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 8 January 2020

Abdul-Majid Wazwaz

The purpose of this paper is to introduce two new (3 + 1)-dimensional Boiti–Leon–Manna–Pempinelli (BLMP) equations, the first with constant coefficients and the other with…

Abstract

Purpose

The purpose of this paper is to introduce two new (3 + 1)-dimensional Boiti–Leon–Manna–Pempinelli (BLMP) equations, the first with constant coefficients and the other with time-dependent coefficients. The author obtains multiple soliton solutions and multiple complex soliton solutions for the two developed models.

Design/methodology/approach

The newly developed models with constant coefficients and with time-dependent coefficients have been handled by using the simplified Hirota’s method. The author also uses the complex Hirota’s criteria for deriving multiple complex soliton solutions.

Findings

The two developed BLMP models exhibit complete integrability for any constant coefficient and any analytic time-dependent coefficients by investigating the compatibility conditions for each developed model.

Research limitations/implications

The paper presents an efficient algorithm for handling integrable equations with constant and analytic time-dependent coefficients.

Practical implications

The paper presents two new integrable equations with a variety of coefficients. The author showed that integrable equations with constant and time-dependent coefficients give real and complex soliton solutions.

Social implications

The paper presents useful algorithms for finding and studying integrable equations with constant and time-dependent coefficients.

Originality/value

The paper presents an original work with a variety of useful findings.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 April 2015

Xiao-rong Kang, Xian Daquan and Zhengde Dai

– The purpose of this paper is to find new non-traveling wave solutions and study its localized structure of Caudrey-Dodd-Gibbon-Kotera-Sawada (CDGKS) equation.

Abstract

Purpose

The purpose of this paper is to find new non-traveling wave solutions and study its localized structure of Caudrey-Dodd-Gibbon-Kotera-Sawada (CDGKS) equation.

Design/methodology/approach

The authors apply the Lie group method twice and combine with the Exp-function method and Riccati equation mapping method to the (2+1)-dimensional CDGKS equation.

Findings

The authors have obtained some new non-traveling wave solutions with two arbitrary functions of time variable.

Research limitations/implications

As non-linear evolution equations is characterized by rich dynamical behavior, the authors just found some of them and others still to be found.

Originality/value

These results may help the authors to investigate some new localized structure and the interaction of waves in high-dimensional models. The new non-traveling wave solutions with two arbitrary functions of time variable are obtained for CDGKS equation using Lie group approach twice and combining with the Exp-function method and Riccati equation mapping method by the aid of Maple.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 25 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 20