Search results

1 – 10 of over 1000
Article
Publication date: 3 April 2017

Krishna Kumar Singh and Mrityunjay K. Sinha

The purpose of this paper is to present a way to determine the optimum values of design parameters in a cylindrical heat sink with branched fins. Investigations into the effect of…

Abstract

Purpose

The purpose of this paper is to present a way to determine the optimum values of design parameters in a cylindrical heat sink with branched fins. Investigations into the effect of design parameters, such as the number of fins, length of fin, height of fin and outer diameter of the heat sink on heat transfer are reported here. In this analysis, branch angle (α = 10°) is considered.

Design/methodology/approach

The Taguchi method, a powerful tool to design optimization, is applied for the tests and standard L9 orthogonal array with three factors, and three levels for each factor are selected. Nine test samples are analyzed in which the total heat transfer rate for each test sample is found. Contribution ratios for each parameter are also found. The results obtained from this analysis are used to find the optimum design parameter values relating to the heat sink performance.

Findings

The optimum design parameters are analyzed in this paper. The reliability of the optimum test samples is verified. Also, the variation of the average heat transfer rate of optimum sample is reported when it is compared with the reference sample.

Practical implications

Effective design of a cylindrical heat sink has been reported for cooling light-emitting diode (LED) lights, which have recently attracted the attention of the illumination industry. In this analysis, the contribution ratios have an important role to set out the performance characteristics of a heat sink.

Originality/value

The reliability of the optimum test samples is verified. Also, the variation of the average heat transfer rate of optimum sample is reported when it is compared with the reference sample.

Details

Journal of Engineering, Design and Technology, vol. 15 no. 2
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 7 March 2016

Adriano Sciacovelli and Vittorio Verda

The purpose of this paper is to investigate efficient designs of a shell-and-tube latent thermal energy storage system through an approach based on the analysis of entropy…

Abstract

Purpose

The purpose of this paper is to investigate efficient designs of a shell-and-tube latent thermal energy storage system through an approach based on the analysis of entropy generation. It proposes innovative branched fins to maximize the performance of the system.

Design/methodology/approach

A computational fluid dynamic (CFD) model is first used to detail the thermo-fluid dynamic transient behavior of the latent heat storage system. The model account for phase change, buoyancy driven fluid flow and heat transfer during the process of energy retrieval from the storage unit (solidification). The CFD model is then used to evaluate locally the entropy generation rate during the process. On the basis of the insight gathered through the analysis of the entropy generation, the design of the fins is gradually modified aiming at the maximization of the performance of the storage system.

Findings

The best fins design leads to a twofold increase of the solidification rate in the latent heat storage unit. The corresponding second-law efficiency shows an increase of 13 percent compared with traditional fins.

Research limitations/implications

The analysis is based on a single tube configuration of the storage system which implies that non-homogeneous effects due to multiple tubes are not considered. Nevertheless, the proposed design procedure is general and could be applied to different configurations of latent heat thermal storage systems.

Practical implications

Entropy generation analysis provides a very useful design approach to develop configurations of latent heat storage systems that may overcome current performance limitations. Also, practitioners in the field may also benefit of the results for improving current installations of energy storage systems.

Originality/value

Entropy generation is adapted and used to find an optimal design for a time dependent process. That is, a geometrical configuration is found for maximizing the performance over a span of time. This is a key aspect of the work because there is a strong trend toward energy systems operating under transient conditions.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 18 December 2023

Shian Li, Yuanzhe Cheng, Qiuwan Shen, Chongyang Wang, Chengdong Peng and Guogang Yang

The purpose of this study is to improve the thermal management of lithium-ion batteries. The phase change material (PCM) cooling does not require additional equipment to consume…

Abstract

Purpose

The purpose of this study is to improve the thermal management of lithium-ion batteries. The phase change material (PCM) cooling does not require additional equipment to consume energy. To improve the heat dissipation capacity of batteries, fins are added in the PCM to enhance the heat transfer process.

Design/methodology/approach

Computational fluid dynamics method is used to study the influence of number of vertical fins and ring fins (i.e. 2, 4, 6 and 8 vertical fins, and 2, 3, 4 and 5 ring fins) and the combination of them on the cooling performance.

Findings

The battery maximum temperature can be decreased by the PCM with vertical or ring fins, and it can be further decreased by the combination of them. The PCM with eight vertical fins and five ring fins reduces the battery maximum temperature by 5.21 K. In addition, the temperature and liquid-phase distributions of the battery and PCM are affected by the design of the cooling system.

Practical implications

This work can provide guidelines for the development of new and efficient PCM cooling systems for lithium-ion batteries.

Originality/value

The combination of PCM and fins can be used to reduce the battery maximum temperature and temperature difference.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Content available
Article
Publication date: 7 March 2016

Božidar Šarler, Nicola Massarotti and P Nithiarasu

200

Abstract

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 2
Type: Research Article
ISSN: 0961-5539

Article
Publication date: 7 June 2019

Mojtaba Bezaatpour and Mohammad Goharkhah

With development of the modern electronic and mechanical devices, cooling requirement has become a serious challenge. Innovative heat transfer enhancement methods are generally…

Abstract

Purpose

With development of the modern electronic and mechanical devices, cooling requirement has become a serious challenge. Innovative heat transfer enhancement methods are generally accompanied by undesirable increase of pressure drop and consequently a pumping power penalty. The current study aims to present a novel and easy method to manufacture a mini heat sink using porous fins and magnetite nanofluid (Fe3O4/water) as the coolant for simultaneous heat transfer enhancement and pressure drop reduction.

Design/methodology/approach

A three-dimensional numerical study is carried out to evaluate the thermal and hydrodynamic performance of the mini heat sink at different volume fractions, porosities and Reynolds numbers, using finite volume method. The solver specifications for discretization of the domain involve the SIMPLE, second-order upwind and second order for pressure, momentum and energy, respectively.

Findings

Results show that porous fins have a favorable effect on both heat transfer and pressure drop compared to solid fins. Creation of a virtual velocity slip on the channel-fin interfaces similar to the micro scale conditions and the flow permeation into the porous fins are the main mechanisms of pressure drop reduction. On the other hand, the heat transfer enhancement is attributed to the increase of the solid-fluid contact area and the improvement of the flow mixing because of the flow permeation into the porous fins. An optimal porosity for maximum convective heat transfer enhancement is obtained as a function of Reynolds number. However, taking both pressure drop and heat transfer effects into account, the overall heat sink performance is shown to be improved at high of Reynolds numbers, volume fractions and fin porosities.

Research limitations/implications

Thermal radiation and gravity effects are ignored, and thermal equilibrium is assumed between solid and fluid phases.

Originality/value

A maximum of 32 per cent increase of convective heat transfer is achieved along with a maximum of 33 per cent reduction in the pressure drop using porous fins and ferrofluid in heat sink.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 24 April 2024

Junaidi Junaidi

This research investigates the Islamic banks’ intermediation role (e.g. branches and deposits) in financing. It also examines how financing contributes to the regions' economic…

Abstract

Purpose

This research investigates the Islamic banks’ intermediation role (e.g. branches and deposits) in financing. It also examines how financing contributes to the regions' economic growth and poverty alleviation as a predictor and mediator variable.

Design/methodology/approach

A total of 297 observations were extracted from 33 Indonesian districts and 14 Islamic banks during the period 2012–2020. Fixed-effect regression analysis was used to examine variable’s interactions.

Findings

The empirical results indicate that Islamic banks have adopted a channelling role towards redistributing capital from lender to borrower. Besides, there are crucial roles in developing economies and reducing poverty at the district level. This study also reinforces the critical role of financing in mediating the relationship between branches and deposits as predictor variables and GDP and poverty as outcome variables.

Research limitations/implications

The current study was limited to Indonesian Islamic banks and the district’s perspective. Future research needs to cover sub-districts and other poverty measurements (e.g. human education and development perspectives), including conventional and Islamic banks. It can help practitioners, regulators and researchers observe the dynamic behaviour of the banking sector to understand its role in the economic and social fields.

Practical implications

Bank managers and regulators should promote branches, deposits and financing. It also enlightens people about the essential role of Islamic banks and their fundamental operations in business and economics.

Originality/value

This study contributes to economic literature, bank managers and local governments' decision-making processes by developing and testing an economic growth and poverty model.

Details

Journal of Economics, Finance and Administrative Science, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2077-1886

Keywords

Article
Publication date: 22 October 2019

Xuejuan Li and Ji-Huan He

The purpose of this paper is to develop an effective numerical algorithm for a gas-melt two-phase flow and use it to simulate a polymer melt filling process. Moreover, the…

Abstract

Purpose

The purpose of this paper is to develop an effective numerical algorithm for a gas-melt two-phase flow and use it to simulate a polymer melt filling process. Moreover, the suggested algorithm can deal with the moving interface and discontinuities of unknowns across the interface.

Design/methodology/approach

The algebraic sub-grid scales-variational multi-scale (ASGS-VMS) finite element method is used to solve the polymer melt filling process. Meanwhile, the time is discretized using the Crank–Nicolson-based split fractional step algorithm to reduce the computational time. The improved level set method is used to capture the melt front interface, and the related equations are discretized by the second-order Taylor–Galerkin scheme in space and the third-order total variation diminishing Runge–Kutta scheme in time.

Findings

The numerical method is validated by the benchmark problem. Moreover, the viscoelastic polymer melt filling process is investigated in a rectangular cavity. The front interface, pressure field and flow-induced stresses of polymer melt during the filling process are predicted. Overall, this paper presents a VMS method for polymer injection molding. The present numerical method is extremely suitable for two free surface problems.

Originality/value

For the first time ever, the ASGS-VMS finite element method is performed for the two-phase flow of polymer melt filling process, and an effective numerical method is designed to catch the moving surface.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 20 March 2024

Hakan F. Oztop, Burak Kiyak and Ishak Gökhan Aksoy

This study aims to focus on understanding how different jet angles and Reynolds numbers influence the phase change materials’ (PCMs) melting process and their capacity to store…

Abstract

Purpose

This study aims to focus on understanding how different jet angles and Reynolds numbers influence the phase change materials’ (PCMs) melting process and their capacity to store energy. This approach is intended to offer novel insights into enhancing thermal energy storage systems, particularly for applications where heat transfer efficiency and energy storage are critical.

Design/methodology/approach

The research involved an experimental and numerical analysis of PCM with a melting temperature range of 22 °C–26°C under various conditions. Three different jet angles (45°, 90° and 135°) and two container angles (45° and 90°) were tested. Additionally, two different Reynolds numbers (2,235 and 4,470) were used to explore the effects of jet outlet velocities on PCM melting behaviour. The study used a circular container and analysed the melting process using the hot air inclined jet impingement (HAIJI) method.

Findings

The obtained results showed that the average temperature for the last time step at Ф = 90° and Re = 4,470 is 6.26% higher for Ф = 135° and 14.23% higher for Ф = 90° compared with the 45° jet angle. It is also observed that the jet angle, especially for Ф = 90°, is a much more important factor in energy storage than the Reynolds number. In other words, the jet angle can be used as a passive control parameter for energy storage.

Originality/value

This study offers a novel perspective on the effective storage of waste heat transferred with air, such as exhaust gases. It provides valuable insights into the role of jet inclination angles and Reynolds numbers in optimizing the melting and energy storage performance of PCMs, which can be crucial for enhancing the efficiency of thermal energy storage systems.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 12 March 2021

Quanda Zhang, Rashmi Arora and Sisira Colombage

Bank branching plays a significant role in a wide range of economic activities. Existing studies on determinants of bank branching activities largely focus on developed countries;…

Abstract

Purpose

Bank branching plays a significant role in a wide range of economic activities. Existing studies on determinants of bank branching activities largely focus on developed countries; studies devoted to developing countries are scant. The purpose of this paper is to examine the determinants of bank branching activities in one of the largest developing country India.

Design/methodology/approach

The authors employ a unique longitudinal data to study the determinants of bank branch location in India. These data are collected at the state level covering 25 Indian states for the period 2006–2017. The authors employ Poisson regression that are better suited for modeling counted dependent variable.

Findings

First, region and bank specific factors such as size of population and bank deposits influence location of bank branches. Second, the relationship between these factors and branch locations is heterogeneous across different types of banks and across states with different business environments.

Practical implications

First, from the view of banks, considering the factors of branch location are crucial in order to set out branching strategy. Irrespective of policy measures aimed at promoting financial inclusion in India, the authors show that banks consider economic activities in the region in locating their branches. Second, from the view of policy makers and regulators, such branching strategy could potentially contribute to financial exclusion. As a result, population in the less developed regions may be excluded from accessing financial services. Hence, policy makers and regulators should take into this account when formulating policies aimed at promoting financial inclusion.

Originality/value

First, while existing studies largely focus on developed countries, studies devoted to developing countries are scant. To the best of our knowledge, the authors have not come across any study that investigates the determinants of bank branch location in India, so the authors reasonably believe that this study is a first-of-its-kind. Second, the study provides a new perspective concerning how regional and bank specific factors influence banks of different ownership in locating branches. Third, while traditional regression used to be a method of choice among early studies, the authors employ Poisson regression that is better suited for modeling counted dependent variable.

Details

International Journal of Bank Marketing, vol. 39 no. 5
Type: Research Article
ISSN: 0265-2323

Keywords

Article
Publication date: 25 June 2019

Heinrich Badenhorst

The purpose of this paper is to apply two optimization methods to the issue of sensible energy store design.

Abstract

Purpose

The purpose of this paper is to apply two optimization methods to the issue of sensible energy store design.

Design/methodology/approach

This paper is a comparison of topology optimization and genetic algorithms.

Findings

Genetic algorithms are prone to converge to local maxima while requiring significantly longer convergence times compared to topology optimization. Topology optimization resulted in structures representing parallel sheets, which are as thin as the grid allows. These configurations can maintain the maximum surface area between the low and high conductivity materials at high refinement, resulting in the best performance.

Practical implications

Time required for 99 per cent store discharge is decreased by 70 per cent using a 50 × 50 optimization grid at a loading of 10 Vol.%.

Originality/value

These approaches have not been compared nor applied to this specific problem before. Value is in the key finding that maximization of surface area is only possible with fins/sheets and not tree structures. This dictates the optimal solution for dynamic behaviour.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of over 1000