Search results

1 – 10 of 514
Open Access
Article
Publication date: 17 November 2023

Yujie Ren and Hai Chi

The brake controller is a key component of the locomotive brake system. It is essential to study its safety.

Abstract

Purpose

The brake controller is a key component of the locomotive brake system. It is essential to study its safety.

Design/methodology/approach

This paper summarizes and analyzes typical faults of the brake controller, and proposes four categories of faults: position sensor faults, microswitch faults, mechanical faults and communication faults. Suggestions and methods for improving the safety of the brake controller are also presented.

Findings

In this paper, a self-judgment and self-learning dynamic calibration method is proposed, which integrates the linear error of the sensor and the manufacturing and assembly errors of the brake controller to solve the output drift. This paper also proposes a logic for diagnosing and handling microswitch faults. Suggestions are proposed for other faults of brake controller.

Originality/value

The methods proposed in this paper can greatly improve the usability of the brake controller and reduce the failure rate.

Details

Railway Sciences, vol. 2 no. 4
Type: Research Article
ISSN: 2755-0907

Keywords

Open Access
Article
Publication date: 19 January 2024

Fuzhao Chen, Zhilei Chen, Qian Chen, Tianyang Gao, Mingyan Dai, Xiang Zhang and Lin Sun

The electromechanical brake system is leading the latest development trend in railway braking technology. The tolerance stack-up generated during the assembly and production…

Abstract

Purpose

The electromechanical brake system is leading the latest development trend in railway braking technology. The tolerance stack-up generated during the assembly and production process catalyzes the slight geometric dimensioning and tolerancing between the motor stator and rotor inside the electromechanical cylinder. The tolerance leads to imprecise brake control, so it is necessary to diagnose the fault of the motor in the fully assembled electromechanical brake system. This paper aims to present improved variational mode decomposition (VMD) algorithm, which endeavors to elucidate and push the boundaries of mechanical synchronicity problems within the realm of the electromechanical brake system.

Design/methodology/approach

The VMD algorithm plays a pivotal role in the preliminary phase, employing mode decomposition techniques to decompose the motor speed signals. Afterward, the error energy algorithm precision is utilized to extract abnormal features, leveraging the practical intrinsic mode functions, eliminating extraneous noise and enhancing the signal’s fidelity. This refined signal then becomes the basis for fault analysis. In the analytical step, the cepstrum is employed to calculate the formant and envelope of the reconstructed signal. By scrutinizing the formant and envelope, the fault point within the electromechanical brake system is precisely identified, contributing to a sophisticated and accurate fault diagnosis.

Findings

This paper innovatively uses the VMD algorithm for the modal decomposition of electromechanical brake (EMB) motor speed signals and combines it with the error energy algorithm to achieve abnormal feature extraction. The signal is reconstructed according to the effective intrinsic mode functions (IMFS) component of removing noise, and the formant and envelope are calculated by cepstrum to locate the fault point. Experiments show that the empirical mode decomposition (EMD) algorithm can effectively decompose the original speed signal. After feature extraction, signal enhancement and fault identification, the motor mechanical fault point can be accurately located. This fault diagnosis method is an effective fault diagnosis algorithm suitable for EMB systems.

Originality/value

By using this improved VMD algorithm, the electromechanical brake system can precisely identify the rotational anomaly of the motor. This method can offer an online diagnosis analysis function during operation and contribute to an automated factory inspection strategy while parts are assembled. Compared with the conventional motor diagnosis method, this improved VMD algorithm can eliminate the need for additional acceleration sensors and save hardware costs. Moreover, the accumulation of online detection functions helps improve the reliability of train electromechanical braking systems.

Content available
Article
Publication date: 1 December 2001

140

Abstract

Details

Aircraft Engineering and Aerospace Technology, vol. 73 no. 6
Type: Research Article
ISSN: 0002-2667

Keywords

Content available
Article
Publication date: 1 January 2006

383

Abstract

Details

Aircraft Engineering and Aerospace Technology, vol. 78 no. 1
Type: Research Article
ISSN: 0002-2667

Keywords

Content available
Article
Publication date: 1 October 2000

99

Abstract

Details

Aircraft Engineering and Aerospace Technology, vol. 72 no. 5
Type: Research Article
ISSN: 0002-2667

Keywords

Content available
Article
Publication date: 1 January 2004

73

Abstract

Details

International Journal of Productivity and Performance Management, vol. 53 no. 1
Type: Research Article
ISSN: 1741-0401

Content available
Article
Publication date: 11 September 2007

311

Abstract

Details

Aircraft Engineering and Aerospace Technology, vol. 79 no. 5
Type: Research Article
ISSN: 0002-2667

Content available
Article
Publication date: 1 February 2002

109

Abstract

Details

Aircraft Engineering and Aerospace Technology, vol. 74 no. 1
Type: Research Article
ISSN: 0002-2667

Keywords

Content available
Article
Publication date: 1 June 2002

Steven J. Prosser

368

Abstract

Details

Sensor Review, vol. 22 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Open Access
Article
Publication date: 4 August 2021

Zhipeng Zhang, Xiang Liu and Hao Hu

At the US passenger stations, train operations approaching terminating tracks rely on the engineer’s compliant behavior to safely stop before the end of the tracks. Noncompliance…

1397

Abstract

Purpose

At the US passenger stations, train operations approaching terminating tracks rely on the engineer’s compliant behavior to safely stop before the end of the tracks. Noncompliance actions from the disengaged or inattentive engineers would result in hazards to train passengers, train crewmembers and bystanders at passenger stations. Over the past decade, a series of end-of-track collisions occurred at passenger stations with substantial property damage and casualties. This study’s developed systemic model and discussions present policymakers, railway practitioners and academic researchers with a flexible approach for qualitatively assessing railroad safety.

Design/methodology/approach

To achieve a system-based, micro-level analysis of end-of-track accidents and eventually promote the safety level of passenger stations, the systems-theoretic accident modeling and processes (STAMP), as a practical systematic accident model widely used in the complex systems, is developed in view of environmental factors, human errors, organizational factors and mechanical failures in this complex socio-technical system.

Findings

The developed STAMP accident model and analytical results qualitatively provide an explicit understanding of the system hazards, constraints and hierarchical control structure of train operations on terminating tracks in the US passenger stations. Furthermore, the safety recommendations and practical options related to obstructive sleep apnea screening, positive train control-based collision avoidance mechanisms, robust system safety program plans and bumping posts are proposed and evaluated using the STAMP approach.

Originality/value

The findings from STAMP-based analysis can serve as valid references for policymakers, government accident investigators, railway practitioners and academic researchers. Ultimately, they can contribute to establishing effective emergent measures for train operations at passenger stations and promote the level of safety necessary to protect the public. The STAMP approach could be adapted to analyze various other rail safety systems that aim to ultimately improve the safety level of railroad systems.

Details

Smart and Resilient Transportation, vol. 3 no. 2
Type: Research Article
ISSN: 2632-0487

Keywords

1 – 10 of 514