Search results

1 – 10 of 352
Article
Publication date: 28 August 2019

Saikrishnan G., Jayakumari L.S., Vijay R. and Lenin Singaravelu D.

The purpose of this study is to investigate the influence of commercially available iron–aluminum alloy compared to copper, iron and aluminum powders on the tribological…

Abstract

Purpose

The purpose of this study is to investigate the influence of commercially available iron–aluminum alloy compared to copper, iron and aluminum powders on the tribological performances of friction composites. The main objective is to replace copper from the friction composite formulations.

Design/methodology/approach

In this study, friction composites were fabricated as of standard brake pads using commercially available iron–aluminum alloy and compared to copper powder, iron powder and aluminum powder-based without varying the other ingredients. The brake pads were developed as per the industrial procedure. The physical, mechanical and thermal properties of the developed brake pads were analyzed as per industrial standards. Tribological properties were analyzed using the chase test. Initial speed and deceleration tests in a real-time braking scenario were performed using a full-scale inertia brake dynamometer. Worn surface analysis was done using a scanning electron microscope.

Findings

The results indicate that iron–aluminum alloy (mechanomade)-based friction composites possess good physical, chemical, thermal and mechanical properties with stable fade and recovery characteristics due to its composition and flake morphology. During initial speed and deceleration braking conditions, iron–aluminum alloy also showed good tribological behavior.

Originality/value

This paper explains the influence of commercially available iron–aluminum alloy in friction composites in enhancing tribological performance by its composition and flake morphology, which could potentially replace copper in friction composites by solving subsequent problems.

Details

Industrial Lubrication and Tribology, vol. 72 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 31 August 2022

İlker Sugözü, Cengiz Öner, İbrahim Mutlu and Banu Sugözü

The purpose of this study was to investigate the use of boric acid as a friction modifier material in brake friction composites and to determine the effect of heat treatment…

183

Abstract

Purpose

The purpose of this study was to investigate the use of boric acid as a friction modifier material in brake friction composites and to determine the effect of heat treatment applied during production on braking performance.

Design/methodology/approach

The addition of five different amounts of boric acid was balanced with cashew, which is in the friction modifier material group. The samples were produced in the following order: dry mixing, preforming and hot-pressing. The effect of the heat treatment that can be applied after the hot-pressing process on the braking performance was investigated. The tribological and physical properties of the samples were determined using tests performed according to appropriate standards. The microstructures of the friction surfaces were investigated using scanning electron microscopy.

Findings

It was observed that the tribological properties of brake friction composites containing 20% by weight of boric acid were improved. It has also been observed that the heat treatment applied after hot pressing increased the friction coefficient of the samples by 7% on average and decreased the specific wear ratio of the samples. When the surface morphologies of the samples are examined, it is seen that the friction layers of the heat-treated samples are wider, and the microvoids and cracks are reduced.

Originality/value

This study showed that boric acid can be used as a friction modifier in brake friction composites. It also revealed the tribological and physical contribution of the applied heat treatment to the composite. Thus, it guides brake friction composite manufacturers in the industry and researchers working in this field.

Details

Industrial Lubrication and Tribology, vol. 74 no. 10
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 13 April 2022

Sathyamoorthy G., Vijay R. and Lenin Singaravelu D.

This study aims to discuss the impact of using bio-polymer (kraft lignin) in the formulation of passenger vehicle disc brake pads (as a substitute for cashew nutshell liquid…

Abstract

Purpose

This study aims to discuss the impact of using bio-polymer (kraft lignin) in the formulation of passenger vehicle disc brake pads (as a substitute for cashew nutshell liquid [CNSL]-based friction dust) and investigate the characteristics of the pads.

Design/methodology/approach

Within the scope of this investigation, three different brake pads were generated by altering the biopolymer-lignin content in conjunction with the friction dust from CNSL without modifying the other components. The brake pads were created in accordance with industry-standard practices. Industrial standards were used to evaluate the newly created brake pad’s thermal, physical and mechanical qualities. The tribological properties of the materials were determined using a full-scale inertia brake dynamometer. The scanning electron microscope examined the worn surfaces in conjunction with elemental mapping.

Findings

The test findings suggest that the brake pads filled with biopolymer-lignin and CNSL-based friction dust (as a partial replacement 50%) exhibited excellent thermal, physical, mechanical characteristics, as well as steady friction and low wear rate.

Originality/value

A bio-polymer (kraft lignin) in friction composites has the potential to produce eco-friendly brake pads and improve the tribological performance of its copper free-composition, which might be used to replace CNSL-based friction dust in friction composites by addressing the issues raised in this work.

Details

Industrial Lubrication and Tribology, vol. 74 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 27 July 2022

Saikrishnan G., Jayakumari L.S. and Vijay R.

The purpose of this paper is to deal with the tribological study on the brake pads developed using various purity-based graphitized graphite.

Abstract

Purpose

The purpose of this paper is to deal with the tribological study on the brake pads developed using various purity-based graphitized graphite.

Design/methodology/approach

This paper deals with developing copper-free brake pads by using graphite as a key lubricant produced using a graphitization process with purity percentages (85, 90 and 95%). The brake pads were developed using traditional manufacturing processes and evaluated for their physical, chemical, thermal and mechanical properties as per industrial standards. Fade and recovery characteristics were analyzed using a full-scale inertia brake dynamometer as per JASO-C-406. The scanning electron microscope was used to analyze the worn surfaces of the brake pads.

Findings

The testing findings reveal that the brake pads with 95% graphitized graphite showed better shear strength with good adhesion levels and lesser density, hardness, acetone extract value, loss on ignition and higher porosity. Effectiveness studies of brake pads with graphite (95% graphitized) showed better results at higher pressure speed conditions than others because of better plateau formation and adequate lubrication.

Originality/value

This paper discusses graphitized graphite of different purity influences brake pad's tribological performance by modifying tribo-films and reducing friction undulations.

Details

Industrial Lubrication and Tribology, vol. 74 no. 7
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 22 September 2022

Justin Antonyraj I., Vijay R., Sathyamoorthy G. and Lenin Singaravelu D.

This paper aims to discuss the influence of graphite with varying purity on the tribological performance of brake pads.

Abstract

Purpose

This paper aims to discuss the influence of graphite with varying purity on the tribological performance of brake pads.

Design/methodology/approach

Three distinct brake pads were created within the scope of this experiment by varying the graphite purity without affecting the other components. The brake pads were made using a traditional manufacturing procedure, and industry standards were used to test the chemical, physical and mechanical properties of the newly produced brake pad. A full-scale inertia brake dynamometer was used to determine the material’s tribological characteristics. The worn surfaces of the brake pads were examined using a scanning electron microscope.

Findings

The test results indicate that brake pads containing 99% pure graphite (artificial grade) displayed good physical, chemical and mechanical features, such as consistent friction and a reduced rate of wear because of the lower impurity level, which eliminates frictional undulations.

Originality/value

This paper discusses the influence of graphite purity on the tribological performance of brake pads by modifying tribofilms and reducing friction undulations.

Details

Industrial Lubrication and Tribology, vol. 75 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 16 October 2018

Harun Yanar, Hasan Huseyin Ayar, Muhammet Demirtas and Gencaga Purcek

This paper aims to investigate the effect of straight phenolic resin content on the fade behavior, frictions and wear characteristics of pre-determined brake pad composite matrix…

Abstract

Purpose

This paper aims to investigate the effect of straight phenolic resin content on the fade behavior, frictions and wear characteristics of pre-determined brake pad composite matrix having specific amount of barite (BaSO4), rock wool, Kevlar, graphite and magnetite.

Design/methodology/approach

Different amount of resin ranging between 16 and 20 wt. per cent were added by changing only the filler (barite) content of composite matrix. Subsequently, friction and wear behavior of the composite samples were analyzed using a special pin-on-disc type test system developed for brake pad sample. The worn surfaces were investigated by SEM and three-dimensional (3D) surface profilometer.

Findings

The average coefficient of friction (CoF) of composite samples and temperature of the disc surface showed a linear increase with decreasing the resin content. The sample having 20 wt. per cent resin showed the minimum wear rate with smooth worn surface. But the amount of fade is quite high in that sample. Decreasing resin content decreased the fade formation, and the composite with 16 per cent resin brought about the minimum fade formation. As the fade formation is unwanted in brake pad applications, the composite with 16 wt. per cent resin was proposed as the most appropriate one considering the performance parameters related to friction and wear.

Originality/value

This paper optimizes the resin content of composite brake pad materials to achieve the best combination of its tribo-performance and mechanical properties and provides valuable information for scientists and engineers working in that area.

Details

Industrial Lubrication and Tribology, vol. 72 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 30 June 2022

Kanagaraj M., Babu S., Sudhan Raj, Jonah N., Gusztáv Fekete and Christy T.V.

The main purpose of this study in the field of automotive brake friction material is to find an effective material to replace the environmentally hazardous copper in the brake pad…

108

Abstract

Purpose

The main purpose of this study in the field of automotive brake friction material is to find an effective material to replace the environmentally hazardous copper in the brake pad formulation.

Design/methodology/approach

Cu is used as functional filler in various forms in the friction material formulation. Because of its hazardous impact to the aquatic life, a suitable replacement of Cu is the main focus of this research. Three novel friction composite materials using ground granulated blast furnace slag (GGBFS) as a suitable alternative for Cu were developed by increasing its Wt.% from 5% to 15% in the step of 5%.

Findings

The physical, mechanical and chemical properties of the developed friction composites were tested as per the industrial standards. The tribological properties were analyzed as per SAE J661 standard using the chase test rig. Initial studies revealed that the friction composite having 5% GGBFS exhibited better physical, mechanical and chemical properties with excellent frictional performance having minimal fluctuations even at higher temperatures. Nonetheless, the results showed that the friction composite containing 15 Wt.% GGBFS revealed a better wear resistance property compared with the other two composites due to the tribo lubricating layer formation at the frictional interface. Scanning electron microscope analysis was performed to understand the wear mechanism and tribo layer formations through topography studies.

Originality/value

This paper explains the influence of GGBFS as a replacement of barytes in brake pads formulation to enhance the tribological performance.

Details

Industrial Lubrication and Tribology, vol. 74 no. 7
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 30 December 2019

Vijay R., Manoharan S. and Lenin Singaravelu D.

This paper aims to deal with the effect of natural barytes purity levels on the tribological performance of brake pads.

Abstract

Purpose

This paper aims to deal with the effect of natural barytes purity levels on the tribological performance of brake pads.

Design/methodology/approach

In this study, brake pads were developed by varying three different natural barytes without varying other ingredients. The brake pads were developed as per the standard industrial practice. The physical, mechanical and thermal properties of the developed brake pads were tested as per the industrial standards. The tribological properties were analyzed using a full-scale inertia brake dynamometer. Worn surface analysis was done using scanning electron microscope coupled with elemental mapping.

Findings

The experimental results indicate that the brake pads filled with natural barytes 95% purity had good physical, chemical and mechanical properties with stable friction and less wear rate due to reduced impurity level preventing frictional undulations.

Originality/value

This paper explains the effect of the purity level of natural barytes in brake pads formulation to enhance the tribological performance by altering tribofilms and preventing friction undulations.

Details

Industrial Lubrication and Tribology, vol. 72 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 2 September 2014

Ugur Ozsarac, Salim Aslanlar, Faruk Varol and Mehmet Ekici

The purpose of this study was to investigate wear behaviours of brake pads produced from carbon–carbon (C/C) composites in both wet and dry friction sliding conditions. Carbon is…

Abstract

Purpose

The purpose of this study was to investigate wear behaviours of brake pads produced from carbon–carbon (C/C) composites in both wet and dry friction sliding conditions. Carbon is probably the most remarkable element in science and also C/C composites are a family of advanced composite materials. They are the most advanced form of carbon and consist of fibre based on carbon precursors embedded in a carbon matrix. In the present work, wear test specimens were prepared according to the related standards and they were exposed to pin-on-disc wear testing in wet and dry sliding conditions with different loads as 10, 20, 30 and 40 N with 1 m/s constant sliding speed. Wet friction process was conducted on all specimens by means of rain water collected from the nature.

Design/methodology/approach

Pin-on-disc wear test tribology lubrication was used.

Findings

Mechanical and physical property measurements of C/C composite brake pad materials: hardness, modulus of elasticity, density and water absorption capacity. Wear performance of materials were measured as coefficient of friction, volumetric loss and specific wear rate.

Originality/value

C/C composite brake pads are used in railway vehicles. Wear performances of them are very important for safety. In this study, wear behaviours of these materials were investigated not only in dry sliding friction condition but also in wet sliding one. Because safety braking is important in all weather conditions for trains, and we used natural rain water to observe the wet sliding friction behaviour of brake pads. “Water lubrication” is an important aspect mentioned in tribology handbooks.

Details

Industrial Lubrication and Tribology, vol. 66 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 February 2023

Hicri Yavuz

This study aims to determine the braking performance of limestone as a filler in brake friction materials.

Abstract

Purpose

This study aims to determine the braking performance of limestone as a filler in brake friction materials.

Design/methodology/approach

Samples containing limestone material (30-35-40%), which can be an alternative to brake friction material filler, were produced. The samples were weighed on precision scales, mixed homogeneously and produced using the hot molding method. The physical and tribological properties of the produced samples were determined, and their microscopic analyzes were made with scanning electron microscopy.

Findings

As the amount of limestone increased, the density of the samples decreased. The friction coefficient and wear rates were close to each other and within the optimum limits for all samples. Limestone materials can be used instead of barite materials studied in the literature on brake linings. Microcracks were observed only in samples containing 30% and 35% limestone in microscopic images.

Originality/value

In this study, the wear rate, coefficient of friction and microstructures on the friction surfaces of brake friction materials containing limestone were investigated. The usability of limestone as a filler in brake friction materials provides valuable information to researchers and industrial organizations in the brake friction material field.

Details

Industrial Lubrication and Tribology, vol. 75 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of 352