Search results

1 – 10 of over 45000
Article
Publication date: 1 March 2005

Ibrahim Senol, Metin Demirtas, Sabir Rustemov and Bilal Gumus

The aims of the paper are to improve the dynamic response of an induction motor based position servo system and to remove the chattering problem in the sliding mode control theory…

1161

Abstract

Purpose

The aims of the paper are to improve the dynamic response of an induction motor based position servo system and to remove the chattering problem in the sliding mode control theory by using fuzzy logic principles. The obtained results are also compared with conventional sliding mode controller to show its performance.

Design/methodology/approach

The main method used for the research is to form a thin boundary layer neighboring the switching surface by using fuzzy logic. The sliding mode control law is inherently discontinuous naturally. Therefore, there are some difficulties such as so many switches occurring between the control bounds, which cannot be carried out by real controllers. Therefore, fuzzy logic is used in the thin boundary layer to determine the control signal current. Thus, the chattering is eliminated.

Findings

The results show that the designed controller has superior performance. But, there are also some difficulties. It is difficult to obtain fuzzy rules. The rules can be obtained by using genetic algorithms without expert's knowledge. However, sliding surface slope C can be optimized to increase system's dynamic performance.

Originality/value

A new boundary layer consisting of the fuzzy rules in the sliding mode control is formed.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 24 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 2 January 2018

Jun Sun, Xiande Wu, Shijie Zhang, Fengzhi Guo and Ting Song

The purpose of this paper is to propose an adaptive robust controller for coupled attitude and orbit control of rigid spacecraft based on dual quaternion in the presence of…

Abstract

Purpose

The purpose of this paper is to propose an adaptive robust controller for coupled attitude and orbit control of rigid spacecraft based on dual quaternion in the presence of external disturbances and model uncertainties.

Design/methodology/approach

First, based on dual quaternion, a theoretical model of the relative motion for rigid spacecraft is introduced. Then, an adaptive robust controller which can realize coordinated control of attitude and orbit is designed in the existence of external disturbances and model uncertainties.

Findings

This paper takes advantage of the Lyapunov function which can guarantee the asymptotic stabilization of the whole system in the existence of parameters uncertainties. Simulation results show that the proposed controller is feasible and effective.

Originality/value

This paper proposes a coupled attitude and orbit adaptive robust controller based on dual quaternion. Simulation results demonstrate that the proposed controller can achieve higher control performance in the presence of parameters uncertainties.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 23 November 2012

Xun Gong, Yue Bai, Zhicheng Hou, Changjun Zhao, Yantao Tian and Qiang Sun

The quad‐rotor is an under‐actuation, strong coupled nonlinear system with parameters uncertainty, unmodeled disturbance and drive capability boundedness. The purpose of the paper…

Abstract

Purpose

The quad‐rotor is an under‐actuation, strong coupled nonlinear system with parameters uncertainty, unmodeled disturbance and drive capability boundedness. The purpose of the paper is to design a flight control system to regulate the aircraft track the desired trajectory and keep the attitude angles stable on account of these issues.

Design/methodology/approach

Considering the dynamics of a quad‐rotor, the closed‐loop flight control system is divided into two nested loops: the translational outer‐loop and the attitude inner‐loop. In the outer‐loop, the translational controller, which exports the desired attitude angles to the inner‐loop, is designed based on bounded control technique. In consideration of the influence of uncertain rotational inertia and external disturbance, the backstepping sliding mode approach with adaptive gains is used in the inner‐loop. The switching control strategy based on the sign functions of sliding surface is introduced into the design procedure with respect to the input saturation.

Findings

The validity of the proposed flight control system was verified through numerical simulation and prototype flight experiment in this paper. Furthermore, with relation to the flying, the motor speed is kept in the predetermined scope.

Originality/value

This article introduces a new flight control system designed for a quad‐rotor.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 5 no. 4
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 22 December 2022

Hang Gao and Chao Ma

The purpose of this paper is to propose a novel event-triggered aperiodic intermittent sliding-mode control (ETAI-SMC) algorithm for master–slave bilateral teleoperation robotic…

Abstract

Purpose

The purpose of this paper is to propose a novel event-triggered aperiodic intermittent sliding-mode control (ETAI-SMC) algorithm for master–slave bilateral teleoperation robotic systems to further save communication resources while maintaining synchronization precision.

Design/methodology/approach

By using the Lyapunov theory, a new event-triggered aperiodic intermittent sliding-mode controller is designed to synchronize master–slave robots in a discontinuous method. Unlike traditional periodic time-triggered continuous control strategy, a new ETAI condition is discussed for less communication pressure. Then, the exponential reaching law is adopted to accelerate sliding-mode variables convergence, which has a significant effect on synchronization performance. In addition, the authors use quantizers to make their algorithm have obvious progress in saving communication resources.

Findings

The proposed control algorithm performance is validated by an experiment developed on a practical bilateral teleoperation system with two PHANToM Omni robotic devices. As a result, the synchronization error is limited within a small range and the control frequency is evidently reduced. Compared with a conventional control algorithm, the experimental results illustrate that the proposed control algorithm is more sensitive to system states changes and it can further save communication resources while guaranteeing the system synchronization accuracy, which is more practical for real bilateral teleoperation robotic systems.

Originality/value

A novel ETAI-SMC for bilateral teleoperation robotic systems is proposed to find a balance between reducing the control frequency and synchronization control precision. Combining the traditional sliding-mode control algorithm with the periodic intermittent control strategy and the event-triggered control strategy has produced obvious effect on our control performance. The proposed ETAI-SMC algorithm helps the controller be more sensitive to system states changes, which makes it possible to achieve precise control with lower control frequency. Moreover, we design an environment contact force feedback algorithm for operators to improve the perception of the slave robot working environment. In addition, quantizers and the exponential convergence law are adopted to help the proposed algorithm perform better in saving communication resources and improving synchronization precision.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 20 September 2023

Zhifang Wang, Quanzhen Huang and Jianguo Yu

In this paper, the authors take an amorphous flattened air-ground wireless self-assembling network system as the research object and focus on solving the wireless self-assembling…

Abstract

Purpose

In this paper, the authors take an amorphous flattened air-ground wireless self-assembling network system as the research object and focus on solving the wireless self-assembling network topology instability problem caused by unknown control communication faults during the operation of this system.

Design/methodology/approach

In the paper, the authors propose a neural network-based direct robust adaptive non-fragile fault-tolerant control algorithm suitable for the air-ground integrated wireless ad hoc network integrated system.

Findings

The simulation results show that the system eventually tends to be asymptotically stable, and the estimation error asymptotically tends to zero with the feedback adjustment of the designed controller. The system as a whole has good fault tolerance performance and autonomous learning approximation performance. The experimental results show that the wireless self-assembled network topology has good stability performance and can change flexibly and adaptively with scene changes. The stability performance of the wireless self-assembled network topology is improved by 66.7% at maximum.

Research limitations/implications

The research results may lack generalisability because of the chosen research approach. Therefore, researchers are encouraged to test the proposed propositions further.

Originality/value

This paper designs a direct, robust, non-fragile adaptive neural network fault-tolerant controller based on the Lyapunov stability principle and neural network learning capability. By directly optimizing the feedback matrix K to approximate the robust fault-tolerant correction factor, the neural network adaptive adjustment factor enables the system as a whole to resist unknown control and communication failures during operation, thus achieving the goal of stable wireless self-assembled network topology.

Article
Publication date: 6 September 2011

Cui Hutao, Cheng Xiaojun, Xu Rui and Cui Pingyuan

The purpose of this paper is to propose an attitude control algorithm for spacecraft with geometric constraints.

Abstract

Purpose

The purpose of this paper is to propose an attitude control algorithm for spacecraft with geometric constraints.

Design/methodology/approach

The geometric constraint is reformulated as a quadratic form when quaternion is used as attitude parameter, then the constraint is proved to be nonconvex and is further transformed to a convex one. By designing a new constraint formulation to satisfy the real constraint in the predictive horizon, the attitude control problem is reshaped to a convex planning problem which is based on receding horizon control.

Findings

The proposed algorithm is more effective in handling geometric constraints than previous research which used single step planning control.

Practical implications

With novel improvements to current methods for steering spacecraft from one attitude to another with geometric constraints, great attitude maneuver path can be achieved to protect instruments and meanwhile satisfy mission requirements.

Originality/value

The attitude control algorithm in this paper is designed especially for the satisfaction of geometric constraints in the process of attitude maneuver of spacecraft. By the application of this algorithm, the security of certain optical instruments, which is critical in an autonomous system, can be further assured.

Details

Aircraft Engineering and Aerospace Technology, vol. 83 no. 5
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 16 October 2018

Zhong Wei, Guangming Song, Huiyu Sun, Qien Qi, Yuan Gao and Guifang Qiao

This paper aims to study the turning strategies for the bounding quadruped robot with an active spine and explore the significant role of the spine in the turning locomotion.

Abstract

Purpose

This paper aims to study the turning strategies for the bounding quadruped robot with an active spine and explore the significant role of the spine in the turning locomotion.

Design/methodology/approach

Firstly, the bounding gait combining the pitch motion of the spine with the leg motion is presented. In this gait, the spine moves in phase with the front legs. All the joints of the legs and spine are controlled by cosine signals to simplify the control, and the initial position and oscillation amplitude of the joints can be tuned. To verify the effectiveness of the proposed gait, the spine joints are set with different initial positions and oscillation amplitudes, and the initial position and oscillation amplitude of the leg joints are tuned to make the virtual model do the best locomotion in terms of the speed and stability in the simulation. The control signals are also used to control a real robot called Transleg. Then, three different turning strategies are proposed, including driving the left and right legs with different strides, swaying the spine in the yaw direction and combining the above two methods. Finally, these strategies are tested on the real robot.

Findings

The stable bounding locomotion can be achieved using the proposed gait. With the spine motion, the speed of the bounding locomotion is increased; the turning radius is reduced; and the angular velocity is increased.

Originality/value

A simple and flexible planning of the bounding gait and three turning strategies for the bounding quadruped robot are proposed. The effectiveness of the proposed bounding gait, along with the beneficial effect of the spine motion in the yaw direction on the turning locomotion is demonstrated with the computer simulations and robot experiments. This will be instructive for the designing and actuating of the other quadruped robots.

Details

Industrial Robot: An International Journal, vol. 45 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 29 September 2023

Xu Hao, Lang Wei, Yue Qiao, Shengzui Xu, Jian Bin Liao, Yu Xi, Wang Wei and Zhi-Wei Liu

The computing power of the legged robot is not enough to perform high-frequency updates for the full-body model predictive control (MPC) of the robot, which is a common problem…

Abstract

Purpose

The computing power of the legged robot is not enough to perform high-frequency updates for the full-body model predictive control (MPC) of the robot, which is a common problem encountered in the gait research of the legged robot. The purpose of this paper is to propose a high-frequency MPC control method for the bounding gait of a parallel quadruped robot.

Design/methodology/approach

According to the bounding gait characteristics of the robot, the quadruped robot model is simplified to an equivalent plane bipedal model. Under the biped robot model, the forces between the robot’s feet and the ground are calculated by MPC. Then, the authors apply a proportional differential controller to distribute these forces to the four feet of the quadruped robot. The robot video can be seen at www.bilibili.com/video/BV1je4y1S7Rn.

Findings

To verify the feasibility of the controller, a prototype was made, and the controller was deployed on the actual prototype and then fully analyzed through experiments. Experiments show that the update frequency of MPC could be stabilized at 500 Hz while the robot was running in the bounding gait stably and efficiently.

Originality/value

This paper proposes a high-frequency MPC controller under the simplified model, which has a higher working efficiency and more stable control performance.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 2 March 2015

Kuan Yang, Ermei Wang, Yinggao Zhou and Kai Zhou

The purpose of this paper is to use analytical method and optimization tools to suggest time-optimal vaccination program for a basic SIR epidemic model with mass action contact…

Abstract

Purpose

The purpose of this paper is to use analytical method and optimization tools to suggest time-optimal vaccination program for a basic SIR epidemic model with mass action contact rate when supply is limited.

Design/methodology/approach

The Lagrange Multiplier Method and Pontryagin’s Maximum Principle are used to explore optimal control strategy and obtain analytical solution for the control system to minimize the total cost of disease with boundary constraint. The numerical simulation is done with Matlab using the sequential linear programming method to illustrate the impact of parameters.

Findings

The result highlighted that the optimal control strategy is Bang-Bang control – to vaccinate with maximal effort until either all of the resources are used up or epidemic is over, and the optimal strategies and total cost of vaccination are usually dependent on whether there is any constraint of resource, however, the optimal strategy is independent on the relative cost of vaccination when the supply is limited.

Practical implications

The research indicate a practical view that the enhancement of daily vaccination rate is critical to make effective initiatives to prevent epidemic from out breaking and reduce the costs of control.

Originality/value

The analysis of the time-optimal application of outbreak control is of clear practical value and the introducing of resource constraint in epidemic control is of realistic sense, these are beneficial for epidemiologists and public health officials.

Details

Kybernetes, vol. 44 no. 3
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 18 December 2023

Mohammad Ali Ashraf

The purpose of this paper is to evaluate the relationship between bankers’ perspectives and their pro-green banking behaviors (i.e. intentions). Specifically, how do bankers’…

Abstract

Purpose

The purpose of this paper is to evaluate the relationship between bankers’ perspectives and their pro-green banking behaviors (i.e. intentions). Specifically, how do bankers’ perspectives on environmental concerns, environmental normative structure and green technology affect their intentions toward G-banking activities?

Design/methodology/approach

A theoretical framework of the theory of bounded rational planned behavior (TBRPB) as its foundation was established. Using measurement scales to measure different aspects of environmental concern, environmental normative structure, green technology, attitudes, perceived behavioral control and subjective norms, a survey instrument was developed to examine the various associations implied by the model of TBRPB. Data were collected from the bankers of selected commercial banks in Bangladesh following the random sampling procedure. The data were analyzed using the partial least square structural equation modeling technique.

Findings

Findings indicate that all of the predictors appear to be robust in predicting the G-banking intention of the sampled bankers in Bangladesh. The results also show that attitudes, subjective norms and perceived behavioral control have significant mediating effects toward bankers’ bounded rational G-banking intention.

Research limitations/implications

There are a few limitations in the study. First, the study considers environmental concerns as an antecedent of the attitude of bankers toward G-banking activities. Future studies can explore other variables related to environmental problems to study G-banking adoption and practices. Second, this study only considers the private conventional bankers as respondents to the survey to assess G-baking intention. In the future, other types of bankers, such as Islamic bankers and public banks’ bankers could be included in the survey to explore G-banking practices. Finally, this research has been done in a developing country-context.

Practical implications

In this study, environmental concerns of bankers appeared to be highly significant predictors to influence their attitudes toward bounded rational G-banking intention. Similarly, the social normative structure also appears to be a robust antecedent of subjective norms to influence bounded rational G-banking intention of respondent bankers. Finally, green technology or bakers’ personal and skill-related ability to control bounded rational G-banking intention also appeared to be a strongly significant predictor of green banking activities. All this evidence implies that respondent bankers in the sample responded positively to provide their positive intention toward G-banking activities based on their environmental concern.

Social implications

Important social implication of the current study is G-banking practices can help reduce carbon emissions and other pollutants which would enrich overall environmental sustainability and ecological conditions.

Originality/value

Few studies are directed on G-banking perspective in Bangladesh. This research is one of the empirical studies which will certainly add values for the clients, institutions and policymakers in banking paradigm.

Details

Journal of Financial Reporting and Accounting, vol. 22 no. 1
Type: Research Article
ISSN: 1985-2517

Keywords

1 – 10 of over 45000