Search results

1 – 10 of 255
Article
Publication date: 18 March 2024

Yu-Xiang Wang, Chia-Hung Hung, Hans Pommerenke, Sung-Heng Wu and Tsai-Yun Liu

This paper aims to present the fabrication of 6061 aluminum alloy (AA6061) using a promising laser additive manufacturing process, called the laser-foil-printing (LFP) process…

Abstract

Purpose

This paper aims to present the fabrication of 6061 aluminum alloy (AA6061) using a promising laser additive manufacturing process, called the laser-foil-printing (LFP) process. The process window of AA6061 in LFP was established to optimize process parameters for the fabrication of high strength, dense and crack-free parts even though AA6061 is challenging for laser additive manufacturing processes due to hot-cracking issues.

Design/methodology/approach

The multilayers AA6061 parts were fabricated by LFP to characterize for cracks and porosity. Mechanical properties of the LFP-fabricated AA6061 parts were tested using Vicker’s microhardness and tensile testes. The electron backscattered diffraction (EBSD) technique was used to reveal the grain structure and preferred orientation of AA6061 parts.

Findings

The crack-free AA6061 parts with a high relative density of 99.8% were successfully fabricated using the optimal process parameters in LFP. The LFP-fabricated parts exhibited exceptional tensile strength and comparable ductility compared to AA6061 samples fabricated by conventional laser powder bed fusion (LPBF) processes. The EBSD result shows the formation of cracks was correlated with the cooling rate of the melt pool as cracks tended to develop within finer grain structures, which were formed in a shorter solidification time and higher cooling rate.

Originality/value

This study presents the pioneering achievement of fabricating crack-free AA6061 parts using LFP without the necessity of preheating the substrate or mixing nanoparticles into the melt pool during the laser melting. The study includes a comprehensive examination of both the mechanical properties and grain structures, with comparisons made to parts produced through the traditional LPBF method.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 26 December 2023

Raghad Ahmed Alaloosi, Onur Çomakli, Mustafa Yazici and Ziad A. Taha

This paper aims to investigate the influence of scan speed on the corrosion and tribocorrosion features of the CoCrMoW samples fabricated via the selective laser melting (SLM…

Abstract

Purpose

This paper aims to investigate the influence of scan speed on the corrosion and tribocorrosion features of the CoCrMoW samples fabricated via the selective laser melting (SLM) process.

Design/methodology/approach

CoCrMoW samples were produced by SLM at different scan speeds. Produced samples were made via structural surveys (X-ray diffraction examinations and scanning electron microscopic analyses), hardness measurements and electrochemical and tribocorrosion experiments.

Findings

Outcomes displayed that the corrosion and tribocorrosion properties of CoCrMoW alloy were significantly influenced by scanning speeds. Also, these properties of the alloy increased with increasing scanning speeds. CoCrMoW samples produced at a laser scan speed of 1,000 mm/s showed the best resistance to corrosion and tribocorrosion. This could be related to the high hardness and low grain structure of the fabricated samples.

Originality/value

This paper may be a practical reference and offers insight into the effect of scanning speeds on the increase of hardness, tribological and corrosion performance of CoCrMoW alloys. This study can help in the further advancement of cobalt-chromium alloy in situ produced by SLM for both electrochemical and tribocorrosion behavior for biomedical applications.

Details

Rapid Prototyping Journal, vol. 30 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 6 March 2024

Qiuchen Zhao, Xue Li, Junchao Hu, Yuehui Jiang, Kun Yang and Qingyuan Wang

The purpose of this paper is to determine the ultra-high cycle fatigue behavior and ultra-slow crack propagation behavior of selective laser melting (SLM) AlSi7Mg alloy under…

Abstract

Purpose

The purpose of this paper is to determine the ultra-high cycle fatigue behavior and ultra-slow crack propagation behavior of selective laser melting (SLM) AlSi7Mg alloy under as-built conditions.

Design/methodology/approach

Constant amplitude and two-step variable amplitude fatigue tests were carried out using ultrasonic fatigue equipment. The fracture surface of the failure specimen was quantitatively analyzed by scanning electron microscope (SEM).

Findings

The results show that the competition of surface and interior crack initiation modes leads to a duplex S–N curve. Both manufacturing defects (such as the lack of fusion) and inclusions can act as initially fatal fatigue microcracks, and the fatigue sensitivity level decreases with the location, size and type of the maximum defects.

Originality/value

The research results play a certain role in understanding the ultra-high cycle fatigue behavior of additive manufacturing aluminum alloys. It can provide reference for improving the process parameters of SLM technology.

Details

International Journal of Structural Integrity, vol. 15 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Open Access
Article
Publication date: 19 December 2023

Ruxin Zhang, Jun Lin, Suicheng Li and Ying Cai

This study aims to explore how to overcome and address the loss of exploratory innovation, thereby achieving greater success in exploratory innovation. This phenomenon of loss…

Abstract

Purpose

This study aims to explore how to overcome and address the loss of exploratory innovation, thereby achieving greater success in exploratory innovation. This phenomenon of loss occurs when enterprises decrease their investment in and engagement with exploratory innovation, ultimately leading to an insufficient amount of such innovation efforts. Drawing on dynamic capabilities, this study investigates the relationship between organizational foresight and exploratory innovation and examines the moderating role of breakthrough orientation/financial orientation.

Design/methodology/approach

This study used survey data collected from 296 Chinese high-tech companies in multiple industries and sectors.

Findings

The evidence produced by this study reveals that three elements of organizational foresight (i.e. environmental scanning capabilities, strategic selection capabilities and integrating capabilities) positively influence exploratory innovation. Furthermore, this positive effect is strengthened in the context of a high-breakthrough orientation. Moreover, the relationships among environmental scanning capabilities, strategic selection capabilities and exploratory innovation become weaker as an enterprise’s financial orientation increases, whereas a strong financial orientation does not affect the relationship between integrating capabilities and exploratory innovation.

Research limitations/implications

Ambidexterity is key to successful enterprise innovation. Compared with exploitative innovation, it is by no means easy to engage in exploratory innovation, which is especially important in high-tech companies. While the loss of exploratory innovation has been observed, few empirical studies have explored ways to promote exploratory innovation more effectively. A key research implication of this study pertains to the role of organizational foresight in the improvement of exploratory innovation in the context of high-tech companies.

Originality/value

This paper contributes to the broader literature on exploratory innovation and organizational foresight and provides practical guidance for high-tech companies regarding ways of avoiding the loss of exploratory innovation and becoming more successful at exploratory innovation.

Details

Journal of Business & Industrial Marketing, vol. 39 no. 13
Type: Research Article
ISSN: 0885-8624

Keywords

Article
Publication date: 7 December 2023

Murat Isik, Isa Emami Tabrizi, Raja Muhammad Awais Khan, Mehmet Yildiz, Eda Aydogan and Bahattin Koc

In recent years, additive manufacturing (AM) has started to be used for manufacturing real functional parts and assemblies for critical applications in aerospace, automotive, and…

Abstract

Purpose

In recent years, additive manufacturing (AM) has started to be used for manufacturing real functional parts and assemblies for critical applications in aerospace, automotive, and machinery industries. Most complex or assembled parts require internal features (IF) such as holes, channels, slots, or guides for locational and mating requirements. Therefore, it is critical to understand and compare the structural and mechanical properties of additively manufactured and conventionally machined IFs.

Design/methodology/approach

In this study, mechanical and microstructural properties of Inconel 718 (Inc718) alloy internal features, manufactured either as-built with AM or machining of additively manufactured (AMed) part thereafter were investigated.

Findings

The results showed that the average ultimate tensile strength (UTS) of additively manufactured center internal feature (AM-IF) is almost analogous to the machined internal feature (M-IF). However, the yield strength of M-IF is greater than that of AM-IF due the greater surface roughness of the internal feature in AM-IF, which is deemed to surpass the effect of microstructure on the mechanical performance. The results of digital image correlation (DIC) analysis suggest that AM-IF and M-IF conditions have similar strain values under the same stress levels but the specimens with as built IF have a more locally ductile region around their IF, which is confirmed by hardness test results. But this does not change global elongation behavior. The microstructural evolution starting from as-built (AB) and heat-treated (HT) samples to specimens with IF are examined. The microstructure of HT specimens has bimodal grain structure with d phase while the AB specimens display a very fine dendritic microstructure with the presence of carbides. Although they both have close values, machined specimens have a higher frequency of finer grains based on SEM images.

Originality/value

It was shown that the concurrent creation of the IF during AM can provide a final part with a preserved ultimate tensile strength and elongation but a decreased yield strength. The variation in UTS of AM-IF increases due to the surface roughness near the internal feature as compared to smooth internal surfaces in M-IF. Hence, the outcomes of this study are believed to be valuable for the industry in terms of determining the appropriate production strategy of parts with IF using AM and postprocessing processes.

Details

Rapid Prototyping Journal, vol. 30 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 12 April 2024

Dongyang Li, Guanghu Yao, Yuyuan Guan, Yaolei Han, Linya Zhao, Lining Xu and Lijie Qiao

In this paper, the authors aim to study the effect of hydrogen on the pitting corrosion behavior of Incoloy 825, a commonly used material for heat exchanger tubes in hydrogenated…

Abstract

Purpose

In this paper, the authors aim to study the effect of hydrogen on the pitting corrosion behavior of Incoloy 825, a commonly used material for heat exchanger tubes in hydrogenated heat exchangers.

Design/methodology/approach

The pitting initiation and propagation behaviors were investigated by electrochemical and chemical immersion experiments and observed and analyzed by scanning electron microscope and energy dispersive spectrometer methods.

Findings

The results show that hydrogen significantly affects the electrochemical behavior of Incoloy 825; the self-corrosion potential decreased from −197 mV before hydrogen charging to −263 mV, −270 mV and −657 mV after hydrogen charging, and the corrosion current density increased from 0.049 µA/cm2 before hydrogen charging to 2.490 µA/cm2, 2.560 µA/cm2 and 2.780 µA/cm2 after hydrogen charging. The pitting susceptibility of the material increases.

Originality/value

Hydrogen is enriched on the precipitate, and the pitting corrosion also initiates at that location. The synergistic effect of hydrogen and precipitate destroys the passive film on the metal surface and promotes pitting initiation.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 19 October 2022

Jeff Gold, Patricia Jolliffe, Jim Stewart, Catherine Glaister and Sallyann Halliday

The purpose of this paper is to argue that human resource development (HRD) needs to embrace and include futures and foresight learning (FFL) as a new addition to its field of…

Abstract

Purpose

The purpose of this paper is to argue that human resource development (HRD) needs to embrace and include futures and foresight learning (FFL) as a new addition to its field of theorising and practice. The question to consider is: How can FFL become a new feature of HRD? A key part of the authors’ argument is that the inclusion of FFL will enable HRD to add to the success of any organisation and make a vital contribution to the management of people at work.

Design/methodology/approach

This paper firstly considers some of the debates surrounding the meaning of HRD. The authors suggest that instability of the time serves to disturb any comforts that have been created in HRD and that there is a need to consider how there might be different futures for what we still call HRD in research, practice and praxis. This paper then considers how FFL might become one possibility for expanding the existing boundaries of HRD. The authors characterise futures and foresight as a learning process, which provides new but complementary features to what is already considered as HRD. This paper will show how FFL can lead to organisation's success and the way this can be achieved.

Findings

There is a wide variety of meanings of the term HRD; however, HRD is still cast as a “weakened profession” which has to play a subservient role to others in the workplace. Over the last 15 years, the expansion of the meaning of HRD has been seen as evidence of its evolving and emerging nature and development based on a co-creation with other disciplines. This creates a space for FFL, defined as an ongoing learning process to find predictable, probable, possible and/or a variety of long-term futures. FFL embraces three key processes of scanning, futuring and reconfiguring, all of which contain a high potential for participants and others to learn as they proceed, providing outcomes at each stage. FFL has been shown to enhance organisation performance and success and HRD interventions can play a key part in implementation. This represents a significant opportunity for the HRD profession to move from weakness towards strength.

Research limitations/implications

For HRD researchers, while FFL is not yet on its radar, the authors would argue that the uncertainties of the future require that more attention be given to what might lie ahead. Indeed, HRD researchers need to ask the question: What is the future of HRD research? In addition, if the authors’ call for FFL to be included in the practice of HRD, such practice will itself provide new pathways for HRD research. Further research questions might include: To what extent is FFL practiced in organisations and what role do HRD practitioners play in delivery? How does FFL impact on organisation behaviour and outcomes? What new products and services emerge from FFL? What new skills are required to deliver FFL? Can FFL enhance the status of HRD practitioners in the work place and its role in decision-making? and How can the HRD profession develop as a hybrid profession with respect to machine learning (ML)/artificial intelligence (AI)?

Practical implications

FFL produces outcomes that have importance for strategy, HRD practitioner can learn to facilitate FFL by action learning and in leadership development programmes. FFL offers a significant opportunity to enhance the importance of HRD in organisations and beyond. FFL offers those involved in HRD a significant opportunity to transfer ideas into practice that have an impact on organisation sustainability. HRD can play a significant role in the design and delivery of ML and AI projects.

Originality/value

This paper concludes with a call for embracing FFL as a challenging but important addition to how we talk about learning at work. The authors argue that FFL offers a significant opportunity to enhance the importance of HRD in organisations and beyond. At its centre, FFL involves learning by people, groups, organisations and machines and this has to be of concern to HRD.

Details

European Journal of Training and Development, vol. 48 no. 1/2
Type: Research Article
ISSN: 2046-9012

Keywords

Article
Publication date: 29 February 2024

Jie Wan, Biao Chen, Jianghua Shen, Katsuyoshi Kondoh, Shuiqing Liu and Jinshan Li

The metallic alloys and their components fabricated via laser powder bed fusion (LPBF) suffer from the microvoids formed inevitably due to the extreme solidification rate during…

Abstract

Purpose

The metallic alloys and their components fabricated via laser powder bed fusion (LPBF) suffer from the microvoids formed inevitably due to the extreme solidification rate during fabrication, which are impossible to be removed by heat treatment. This paper aims to remove those microvoids in as-built AlSi10Mg alloys by hot forging and enhance their mechanical properties.

Design/methodology/approach

AlSi10Mg samples were built using prealloyed powder with a set of optimized LPBF parameters, viz. 350 W of laser power, 1,170 mm/s of scan speed, 50 µm of layer thickness and 0.24 mm of hatch spacing. As-built samples were preheated to 430°C followed by immediate pressing with two different thickness reductions of 10% and 35%. The effect of hot forging on the microstructure was analyzed by means of X-ray diffraction, scanning electron microscopy, electron backscattered diffraction and transmission electron microscopy. Tensile tests were performed to reveal the effect of hot forging on the mechanical properties.

Findings

By using hot forging, the large number of microvoids in both as-built and post heat-treated samples were mostly healed. Moreover, the Si particles were finer in forged condition (∼150 nm) compared with those in heat-treated condition (∼300 nm). Tensile tests showed that compared with heat treatment, the hot forging process could noticeably increase tensile strength at no expense of ductility. Consequently, the toughness (integration of tensile stress and strain) of forged alloy increased by ∼86% and ∼24% compared with as-built and heat-treated alloys, respectively.

Originality/value

Hot forging can effectively remove the inevitable microvoids in metals fabricated via LPBF, which is beneficial to the mechanical properties. These findings are inspiring for the evolution of the LPBF technique to eliminate the microvoids and boost the mechanical properties of metals fabricated via LPBF.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 15 April 2024

Rilwan Kayode Apalowo, Mohamad Aizat Abas, Zuraihana Bachok, Mohamad Fikri Mohd Sharif, Fakhrozi Che Ani, Mohamad Riduwan Ramli and Muhamed Abdul Fatah bin Muhamed Mukhtar

This study aims to investigate the possible defects and their root causes in a soft-termination multilayered ceramic capacitor (MLCC) when subjected to a thermal reflow process.

Abstract

Purpose

This study aims to investigate the possible defects and their root causes in a soft-termination multilayered ceramic capacitor (MLCC) when subjected to a thermal reflow process.

Design/methodology/approach

Specimens of the capacitor assembly were subjected to JEDEC level 1 preconditioning (85 °C/85%RH/168 h) with 5× reflow at 270°C peak temperature. Then, they were inspected using a 2 µm scanning electron microscope to investigate the evidence of defects. The reliability test was also numerically simulated and analyzed using the extended finite element method implemented in ABAQUS.

Findings

Excellent agreements were observed between the SEM inspections and the simulation results. The findings showed evidence of discontinuities along the Cu and the Cu-epoxy layers and interfacial delamination crack at the Cu/Cu-epoxy interface. The possible root causes are thermal mismatch between the Cu and Cu-epoxy layers, moisture contamination and weak Cu/Cu-epoxy interface. The maximum crack length observed in the experimentally reflowed capacitor was measured as 75 µm, a 2.59% difference compared to the numerical prediction of 77.2 µm.

Practical implications

This work's contribution is expected to reduce the additional manufacturing cost and lead time in investigating reliability issues in MLCCs.

Originality/value

Despite the significant number of works on the reliability assessment of surface mount capacitors, work on crack growth in soft-termination MLCC is limited. Also, the combined experimental and numerical investigation of reflow-induced reliability issues in soft-termination MLCC is limited. These cited gaps are the novelties of this study.

Details

Microelectronics International, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 9 April 2024

Nichapa Phraknoi, Mark Stevenson and Meng Jia

The purpose of this study is to define and investigate the governance requirements of supply chain finance (SCF).

Abstract

Purpose

The purpose of this study is to define and investigate the governance requirements of supply chain finance (SCF).

Design/methodology/approach

A qualitative analysis of 849 news articles published in UK newspapers (2000–2022) using the Gioia method.

Findings

SCF governance relies on developing capacities for reflexive scrutiny at two stages: (1) prior to entering into an SCF relationship and (2) during its operation. Based on the notion of SCF as a complex adaptive system, we theorise SCF governance requirements as a dual-layered semipermeable boundary. The semipermeability of the two layers allows for a dynamic exchange between the SCF system and its environment. The first layer is the capacity to selectively enable or control the entry and access of certain actors and practices into the SCF system. The second layer is a capacity for ongoing scrutiny of the SCF operation and its development. Further, we identify five aspects of governance to be enabled, i.e. enhancing adaptability, building confidence, improving efficiency, advancing technology and promoting transparency; and four aspects to be controlled, i.e. preventing abuse of power, curbing fraud risk, constraining operational risk and restricting risky extensions to SCF practices.

Practical implications

Our dynamic framework can guide supply chain (SC) members in making decisions about whether to participate, or continue to operate, in an SCF relationship. Moreover, the findings have implications for policymakers and authorities who oversee entry/access and the involvement of SCF providers, particularly, fintech firms.

Originality/value

The study contributes to both the SC and governance literature by providing a systematic analysis of what SCF governance has to accomplish. Our novel contribution lies in its analysis of SCF governance based on a complex adaptive system approach, which expands the existing literature where SCF is described in rather static terms. More specifically, it suggests a need for a dynamic duality of SCF governance through the semipermeable boundary that selectively enables and controls certain SCF actors and practices.

Details

International Journal of Physical Distribution & Logistics Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0960-0035

Keywords

1 – 10 of 255