Search results

1 – 10 of over 11000
Article
Publication date: 6 June 2016

Ashraf Muhammad, Ali J Chamkha, S Iqbal and Masud Ahmad

The purpose of this paper is to report a numerical solution for the problem of steady, two dimensional boundary layer buoyant flow on a vertical magnetized surface, when both the…

Abstract

Purpose

The purpose of this paper is to report a numerical solution for the problem of steady, two dimensional boundary layer buoyant flow on a vertical magnetized surface, when both the viscosity and thermal conductivity are assumed to be temperature-dependent. In this case, the motion is governed by a coupled set of three nonlinear partial differential equations, which are solved numerically by using the finite difference method (FDM) by introducing the primitive variable formulation. Calculations of the coupled equations are performed to investigate the effects of the different governing parameters on the profiles of velocity, temperature and the transverse component of magnetic field. The effects of the thermal conductivity variation parameter, viscosity variation parameter, magnetic Prandtl number Pmr, magnetic force parameter S, mixed convection parameter Ri and the Prandtl number Pr on the flow structure and heat transfer characteristics are also examined.

Design/methodology/approach

FDM.

Findings

It is noted that when the Prandtl number Pr is sufficiently large, i.e. Pr=100, the buoyancy force that driven the fluid motion is decreased that decrease the momentum boundary layer and there is no change in thermal boundary layer is noticed. It is also noted that due to slow motion of the fluid the magnetic current generates which increase the magnetic boundary layer thickness at the surface. It is observed that the momentum boundary layer thickness is increased, thermal and magnetic field boundary layers are decreased with the increase of thermal conductivity variation parameter =100. The maximum boundary layer thickness is increased for =100 and there is no change seen in the case of thermal boundary layer thickness but magnetic field boundary layer is deceased. The momentum boundary layer thickness shoot quickly for =40 but is very smooth for =50.There is no change is seen for the case of thermal boundary layer and very clear decay for =40 is noted.

Originality/value

This work is original research work.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 May 1993

MICHAEL J. NUSCA

An aerothermodynamic design code for axisymmetric projectiles has been developed using a viscous‐inviscid interaction scheme. Separate solution procedures for the inviscid and the…

Abstract

An aerothermodynamic design code for axisymmetric projectiles has been developed using a viscous‐inviscid interaction scheme. Separate solution procedures for the inviscid and the viscous (boundary layer) fluid dynamic equations are coupled by an iterative solution procedure. Non‐equilibrium, equilibrium and perfect gas boundary layer equations are included. The non‐equilibrium gas boundary layer equations assume a binary mixture (two species; atoms and molecules) of chemically reacting perfect gases. Conservation equations for each species include finite reaction rates applicable to high temperature air. The equilibrium gas boundary layer equations assume infinite rate reactions, while the perfect gas equations assume no chemical reactions. Projectile near‐wall and surface flow profiles (velocity, pressure, density, temperature and heat transfer) representing converged solutions to both the inviscid and viscous equations can be obtained in less than two minutes on minicomputers. A technique for computing local reverse flow regions is included. Computations for yawed projectiles are accomplished using a coordinate system transformation technique that is valid for small angle‐of‐attack. Computed surface pressure, heat transfer rates and aerodynamic forces and moments for 1.25 &le Mach No. &le 10.5 are compared to wind tunnel and free flight measurements on flat plate, blunt‐cone, and projectile geometries such as a cone‐cylinder‐flare.

Details

Engineering Computations, vol. 10 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 28 October 2013

Lelanie Smith, Oliver Oxtoby, A. Malan and Josua Meyer

– The purpose of this paper is to introduce a unique technique to couple the two-integral boundary layer solutions to a generic inviscid solver in an iterative fashion.

Abstract

Purpose

The purpose of this paper is to introduce a unique technique to couple the two-integral boundary layer solutions to a generic inviscid solver in an iterative fashion.

Design/methodology/approach

The boundary layer solution is obtained using the two-integral method to solve displacement thickness point by point with a local Newton method, at a fraction of the cost of a conventional mesh-based, full viscous solution. The boundary layer solution is coupled with an existing inviscid solver. Coupling occurs by moving the wall to a streamline at the computed boundary layer thickness and treating it as a slip boundary, then solving the flow again and iterating. The Goldstein singularity present when solving boundary layer equations is overcome by solving an auxiliary velocity equation along with the displacement thickness.

Findings

The proposed method obtained favourable results when compared with the analytical solutions for flat and inclined plates. Further, it was applied to modelling the flow around a NACA0012 airfoil and yielded results similar to those of the widely used XFOIL code.

Originality/value

A unique method is proposed for coupling of the boundary layer solution to the inviscid flow. Rather than the traditional transpiration boundary condition, mesh movement is employed to simulate the boundary layer thickness in a more physically meaningful way. Further, a new auxiliary velocity equation is presented to circumvent the Goldstein singularity.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 23 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 20 December 2023

Oskar Szulc, Piotr Doerffer, Pawel Flaszynski and Marianna Braza

This paper aims to describe a proposal for an innovative method of normal shock wave–turbulent boundary layer interaction (SBLI) and shock-induced separation control.

Abstract

Purpose

This paper aims to describe a proposal for an innovative method of normal shock wave–turbulent boundary layer interaction (SBLI) and shock-induced separation control.

Design/methodology/approach

The concept is based on the introduction of a tangentially moving wall upstream of the shock wave and in the interaction region. The SBLI control mechanism may be implemented as a closed belt floating on an air cushion, sliding over two cylinders and forming the outer skin of the suction side of the airfoil. The presented exploratory numerical study is conducted with SPARC solver (steady 2D RANS). The effect of the moving wall is presented for the NACA 0012 airfoil operating in transonic conditions.

Findings

To assess the accuracy of obtained solutions, validation of the computational model is demonstrated against the experimental data of Harris, Ladson & Hill and Mineck & Hartwich (NASA Langley). The comparison is conducted not only for the reference (impermeable) but also for the perforated (permeable) surface NACA 0012 airfoils. Subsequent numerical analysis of SBLI control by moving wall confirms that for the selected velocity ratios, the method is able to improve the shock-upstream boundary layer and counteract flow separation, significantly increasing the airfoil aerodynamic performance.

Originality/value

The moving wall concept as a means of normal shock wave–turbulent boundary layer interaction and shock-induced separation control has been investigated in detail for the first time. The study quantified the necessary operational requirements of such a system and practicable aerodynamic efficiency gains and simultaneously revealed the considerable potential of this promising idea, stimulating a new direction for future investigations regarding SBLI control.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 March 1962

G.V. Lachmann

Since the end of the Second World War, many spectacular advances have been made in aeronautics, thanks chiefly to the development of more powerful and economical jet engines. As…

Abstract

Since the end of the Second World War, many spectacular advances have been made in aeronautics, thanks chiefly to the development of more powerful and economical jet engines. As to the parasitic drag of manned aircraft, progress has been confined to reducing unfavourable compressibility effects (area rule, Whitcombe bodies); methods to suppress separation have been developed but no new methods to reduce the drag resulting from turbulent boundary layers developing over the exposed surfaces have as yet found practical application.

Details

Aircraft Engineering and Aerospace Technology, vol. 34 no. 3
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 15 December 2022

Xuesong Wang, Jinju Sun, Ernesto Benini, Peng Song and Youwei He

This study aims to use computational fluid dynamics (CFD) to understand and quantify the overall blockage within a transonic axial flow compressor (AFC), and to develop an…

Abstract

Purpose

This study aims to use computational fluid dynamics (CFD) to understand and quantify the overall blockage within a transonic axial flow compressor (AFC), and to develop an efficient collaborative design optimization method for compressor aerodynamic performance and stability in conjunction with a surrogate-assisted optimization technique.

Design/methodology/approach

A quantification method for the overall blockage is developed to integrate the effect of regional blockages on compressor aerodynamic stability and performance. A well-defined overall blockage factor combined with efficiency drives the optimizer to seek the optimum blade designs with both high efficiency and wide-range stability. An adaptive Kriging-based optimization technique is adopted to efficiently search for Pareto front solutions. Steady and unsteady numerical simulations are used for the performance and flow field analysis of the datum and optimum designs.

Findings

The proposed method not only remarkably improves the compressor efficiency but also significantly enhances the compressor operating stability with fewer CFD calls. These achievements are mainly attributed to the improvement of specific flow behaviors oriented by the objectives, including the attenuation of the shock and weakening of the tip leakage flow/shock interaction intensity.

Originality/value

CFD-based design optimization of AFC is inherently time-consuming, which becomes even trickier when optimizing aerodynamic stability since the stall margin relies on a complete simulation of the performance curve. The proposed method could be a good solution to the collaborative design optimization of aerodynamic performance and stability for transonic AFC.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 September 1955

T.R. Nonweiler

WRITING an introduction to an article by Mr S. B. Gates on Trailing‐Edge Flaps, which appeared in these columns in 1937, the Editor felt constrained to admit his bewilderment over…

Abstract

WRITING an introduction to an article by Mr S. B. Gates on Trailing‐Edge Flaps, which appeared in these columns in 1937, the Editor felt constrained to admit his bewilderment over the number and variety of types of high‐lift aid which then existed. Without intending any disrespect, I imagine that the progress of years must have added to his embarrassment. It has certainly added to the number of devices in use and under test.

Details

Aircraft Engineering and Aerospace Technology, vol. 27 no. 9
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 8 July 2019

Massoud Tatar, Mojtaba Tahani and Mehran Masdari

In this paper, the applicability of shear stress transport k-ω model along with the intermittency concept has been investigated over pitching airfoils to capture the laminar…

Abstract

Purpose

In this paper, the applicability of shear stress transport k-ω model along with the intermittency concept has been investigated over pitching airfoils to capture the laminar separation bubble (LSB) position and the boundary layer transition movement. The effect of reduced frequency of oscillations on boundary layer response is also examined.

Design/methodology/approach

A two-dimensional computational fluid dynamic code was developed to compute the effects of unsteadiness on LSB formation, transition point movement, pressure distribution and lift force over an oscillating airfoil using transport equation of intermittency accompanied by the k-ω model.

Findings

The results indicate that increasing the angle of attack over the stationary airfoil causes the LSB size to shorten, leading to a rise in wall shear stress and pressure suction peak. In unsteady cases, both three- and four-equation models are capable of capturing the experimentally measured transition point well. The transition is delayed for an unsteady boundary layer in comparison with that for a static airfoil at the same angle of attack. Increasing the unsteadiness of flow, i.e. reduced frequency, moves the transition point toward the trailing edge of the airfoil. This increment also results in lower static pressure suction peak and hence lower lift produced by the airfoil. It was also found that the fully turbulent k-ω shear–stress transport (SST) model cannot capture the so-called figure-of-eight region in lift coefficient and the employment of intermittency transport equation is essential.

Practical implications

Boundary layer transition and unsteady flow characteristics owing to airfoil motion are both important for many engineering applications including micro air vehicles as well as helicopter blade, wind turbine and aircraft maneuvers. In this paper, the accuracy of transition modeling based on intermittency transport concept and the response of boundary layer to unsteadiness are investigated.

Originality/value

As a conclusion, the contribution of this paper is to assess the ability of intermittency transport models to predict LSB and transition point movements, static pressure distribution and aerodynamic lift variations and boundary layer flow pattern over dynamic pitching airfoils with regard to oscillation frequency effects for engineering problems.

Details

Aircraft Engineering and Aerospace Technology, vol. 91 no. 8
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 6 May 2020

S. Das, R.R. Patra and R.N. Jana

The purpose of this study is to present the significance of Joule heating, viscous dissipation, magnetic field and slip condition on the boundary layer flow of an electrically…

Abstract

Purpose

The purpose of this study is to present the significance of Joule heating, viscous dissipation, magnetic field and slip condition on the boundary layer flow of an electrically conducting Boussinesq couple-stress fluid induced by an exponentially stretching sheet embedded in a porous medium under the effect of the magnetic field of the variable kind. The heat transfer phenomenon is accounted for under thermal radiation, Joule and viscous dissipation effects.

Design/methodology/approach

The governing nonlinear partial differential equations are transformed to the nonlinear ordinary differential equations (ODEs) by using some appropriate dimensionless variables and then the consequential nonlinear ODEs are solved numerically by making the use of the well-known shooting iteration technique along with the standard fourth-order Runge–Kutta integration scheme. The impact of emerging flow parameters on velocity and temperature profiles, streamlines, local skin friction coefficient and Nusselt number are described comprehensively through graphs and tables.

Findings

Results reveal that the velocity profile is observed to diminish considerably within the boundary layer in the presence of a magnetic field and slip condition. The enhanced radiation parameter is to decline the temperature field. The slip effect is favorable for fluid flow.

Originality/value

Till now, slip effect on Boussinesq couple-stress fluid over an exponentially stretching sheet embedded in a porous medium has not been explored. The present results are validated with the previously published study and found to be highly satisfactory.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 1 December 1948

N.A.V. Piercy, L.G. Whitehead and R.A. Tyler

THE greatly increased transition Reynolds numbers now attained in the boundary layers of cylinders having favourably shaped sections have renewed interest in the solution of the…

Abstract

THE greatly increased transition Reynolds numbers now attained in the boundary layers of cylinders having favourably shaped sections have renewed interest in the solution of the equations of steady flow in a thin boundary layer. It is familiar that the scries solutions of Blasius and Hiemenz, improved by Howarth (ref. 1), and of Falkner (ref. 2) become severely restricted in range when applied to cylinders having other than bluff sections. But it appears that a series solution of substantially greater range is possible, at least for symmetrical flow, provided that the nose of the section is rounded. This problem forms the subject of Section I of the present paper.

Details

Aircraft Engineering and Aerospace Technology, vol. 20 no. 12
Type: Research Article
ISSN: 0002-2667

1 – 10 of over 11000