Search results

1 – 3 of 3
Article
Publication date: 25 August 2021

Nitin Tejram Deotale

To enhance the performance transmit antenna selection (TAS) of spatial modulation (SM), systems technique needs to be essential. This TAS is an effective technique for reducing…

Abstract

Purpose

To enhance the performance transmit antenna selection (TAS) of spatial modulation (SM), systems technique needs to be essential. This TAS is an effective technique for reducing the multiple input multiple output (MIMO) systems computational difficulty, and bit error rate (BER) can increase remarkably by various TAS algorithms. But these selection methods cannot provide code gain, so it is essential to join the TAS with external code to obtain cy -ode gain advantages in BER.

Design/methodology/approach

In this paper, BoseChaudhuriHocquenghem (BCH)-Turbo code TC is combined with the orthogonal space time block code system.

Findings

In some existing work, the improved BER has been perceived by joining forward error correction code and space time block code (STBC) for MIMO systems provided greater code gain. The proposed work can provide increasing code gain and the effective advantages of the TAS-OSTBC system.

Originality/value

To perform the system analysis, Rayleigh channel is used. In the case with multiple TAS-OSTBC systems, better performance can provide by this new joint of the BCH-Turbo compared to the conventional Turbo code for the Rayleigh fading.

Article
Publication date: 28 June 2023

Ahmet Esat Süzer and Hakan Oktal

The main aim of this study is to elaborately examine the error correction technology for global navigation satellite system (GNSS) navigation messages and to draw a conceptual…

Abstract

Purpose

The main aim of this study is to elaborately examine the error correction technology for global navigation satellite system (GNSS) navigation messages and to draw a conceptual decision support framework related to the modernization of the GNSS and other systems.

Design/methodology/approach

The extensive simulation model developed in Matrix Laboratory (MATLAB) is used to evaluate the performance of forward error correction (FEC) codes such as Hamming, BoseChaudhuriHocquenghem, convolutional, turbo, low-density parity check (LDPC) and polar codes under different levels of noise.

Findings

The performance and robustness of the aforementioned algorithms are compared based on the bit length, complexity and execution time of the GNSS navigation message. In terms of bit error rate, LDPC coding exhibits more ability in the robustness of the navigation message, while polar code gives better results according to the execution time.

Practical implications

In view of future new GNSS signals and message design, the findings of this paper may provide significant insight into navigation message modernization and design as an important part of GNSS modernization.

Originality/value

To the best of the authors’ knowledge, this is the first study that conducts a direct comparison of various FEC algorithms on GNSS navigation message performance against noise, taking into consideration turbo and newly developed polar codes.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 8
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 31 July 2021

Yuvarani T. and Arunachalam A.R.

Generally, Internet-of-Things (IoT) is quite small sized with limited resource and low cost that may be vulnerable for physical and cloned attacking. All kind of authentication…

Abstract

Purpose

Generally, Internet-of-Things (IoT) is quite small sized with limited resource and low cost that may be vulnerable for physical and cloned attacking. All kind of authentication protocols designed to IoT devices are robust despite which it is prone to attack by hackers. In order to resolve this issue, there are various researches that have introduced the best method for obscuring the cryptographic key. However, the studies have majorly aimed to generate the key dynamically from noise data by Fuzzy Extractor (FE) or Fuzzy Commitment (FC). Hence, these methods have utilized this kind of data with noisy source namely Physical Unclonable Function (PUF) or biometric data. There are several IoT devices that get operated over undermined environment in which biometric data is not available but the technique utilized with biometric data can't be used to undermined IoT devices. Even though, the PUF technique is implemented for the undermined IoT devices this is quite vulnerable over physical attacks inclusive of accidental move and theft.

Design/methodology/approach

This paper has proposed an advanced scheme in fuzzy commitment over IoT devices which is said to be Improved Two Factor Fuzzy Commitment Scheme (ITFFCS) and this proposed ITFFCS has used two kind of noisy factors present inside and outside the IoT devices. Though, an intruder has accomplished the IoT devices with an access to the internal noisy source, the intruder can't select an exact key from the available data which have been compared using comparable module as an interest.

Findings

Moreover, the proposed ITFFC method results are compared with existing Static Random Accessible Memory (SRAM) PUF in enterprises application which illustrated the proposed ITFFC method with PUF has accomplished better results in parameters such as energy consumption, area utilization, False Acceptance Ratio (FAR) and Failure Rejection Ratio (FRR).

Originality/value

Thus, the proposed ITFFCS-PUF is comparatively better than existing method in both FAR and FRR with an average of 0.18% and 0.28%.

Details

International Journal of Pervasive Computing and Communications, vol. 19 no. 2
Type: Research Article
ISSN: 1742-7371

Keywords

1 – 3 of 3